Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
040045 KU Econometrics in Finance (MA) (2023W)
Prüfungsimmanente Lehrveranstaltung
Labels
VOR-ORT
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 11.09.2023 09:00 bis Fr 22.09.2023 12:00
- Anmeldung von Di 26.09.2023 09:00 bis Mi 27.09.2023 12:00
- Abmeldung bis Fr 20.10.2023 23:59
Details
max. 50 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Dienstag 03.10. 15:00 - 16:30 Seminarraum 6, Kolingasse 14-16, EG00
- Donnerstag 05.10. 15:00 - 16:30 Seminarraum 6, Kolingasse 14-16, EG00
- Dienstag 10.10. 15:00 - 16:30 Seminarraum 15, Kolingasse 14-16, OG01
- Donnerstag 12.10. 15:00 - 16:30 Seminarraum 15, Kolingasse 14-16, OG01
- Dienstag 17.10. 15:00 - 16:30 Seminarraum 15, Kolingasse 14-16, OG01
- Donnerstag 19.10. 15:00 - 16:30 Seminarraum 15, Kolingasse 14-16, OG01
- Dienstag 24.10. 15:00 - 16:30 Seminarraum 15, Kolingasse 14-16, OG01
- Dienstag 31.10. 15:00 - 16:30 Seminarraum 15, Kolingasse 14-16, OG01
- Dienstag 07.11. 15:00 - 16:30 Seminarraum 15, Kolingasse 14-16, OG01
- Donnerstag 09.11. 15:00 - 16:30 Seminarraum 15, Kolingasse 14-16, OG01
- Dienstag 14.11. 15:00 - 16:30 Seminarraum 15, Kolingasse 14-16, OG01
- Donnerstag 16.11. 15:00 - 16:30 Seminarraum 15, Kolingasse 14-16, OG01
- Dienstag 21.11. 15:00 - 16:30 Seminarraum 15, Kolingasse 14-16, OG01
- Donnerstag 23.11. 15:00 - 16:30 Seminarraum 15, Kolingasse 14-16, OG01
- Dienstag 28.11. 15:00 - 16:30 Seminarraum 15, Kolingasse 14-16, OG01
- Donnerstag 30.11. 15:00 - 16:30 Seminarraum 15, Kolingasse 14-16, OG01
- Dienstag 05.12. 15:00 - 16:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Donnerstag 07.12. 15:00 - 16:30 Seminarraum 15, Kolingasse 14-16, OG01
- Dienstag 12.12. 15:00 - 16:30 Seminarraum 15, Kolingasse 14-16, OG01
- Donnerstag 14.12. 15:00 - 16:30 Seminarraum 15, Kolingasse 14-16, OG01
- Montag 08.01. 15:00 - 16:30 Seminarraum 15, Kolingasse 14-16, OG01
- Donnerstag 11.01. 15:00 - 16:30 Seminarraum 15, Kolingasse 14-16, OG01
- Dienstag 16.01. 15:00 - 16:30 Seminarraum 15, Kolingasse 14-16, OG01
- Donnerstag 18.01. 15:00 - 16:30 Seminarraum 15, Kolingasse 14-16, OG01
- Dienstag 23.01. 15:00 - 16:30 Seminarraum 15, Kolingasse 14-16, OG01
- Donnerstag 25.01. 15:00 - 16:30 Seminarraum 15, Kolingasse 14-16, OG01
-
Dienstag
30.01.
15:00 - 16:30
Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Seminarraum 17, Kolingasse 14-16, OG02
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
The objective of this course is to introduce students to the field of financial econometrics and give them an overview of the most important topics and techniques. The emphasis will be on financial derivatives pricing, volatility models and advanced Bayesian estimation methods. Empirical applications will cover the estimation and testing of asset and derivatives pricing models and macro-financial econometric models. Therefore, a part of the course consists of practical sessions where some of the concepts will be applied to real financial data.
Art der Leistungskontrolle und erlaubte Hilfsmittel
The assessment consists of the following parts:i) closed-book midterm test, lasting about 60 minutes. The test can consist of multiple-choice questions, analytical derivations, and interpretations of empirical results.ii) Closed-book final exam, lasting about 60 minutes. Depending on the number of course participants, the exams might be done in oral form or as an empirical take-home project.iii) Take-home assignments: students must solve problems and submit written assignments. They can consist of multiple-choice questions, analytical derivations, coding and interpretations of empirical results. The solutions may also have to be presented in class.Important: aside from the three assignments, there will be no additional examination possibilities afterwards.
Mindestanforderungen und Beurteilungsmaßstab
Required prerequisites:- probability and econometrics (especially time-series analysis) as taught in "040111 - Introductory Econometrics"
- knowledge of R and/or MATLABDesiderable prerequisites:- maximum likelihood and GMM estimation as taught in "040033 - Econometrics II"
- basic Monte Carlo methods: see chapters 2-3 from the book "Introducing Monte Carlo Methods with R" (2009), by Robert and CasellaFor the final grade: (i) counts 30%, (ii) counts 40%, and (iii) counts 30%.To pass the course, a minimum level of 45% has to be reached.Rating:
[85%; 100%]: 1.0
[70%; 85%): 2.0
[55%; 70%): 3.0
[45%; 55%): 4.0
[0; 45%): 5.0
- knowledge of R and/or MATLABDesiderable prerequisites:- maximum likelihood and GMM estimation as taught in "040033 - Econometrics II"
- basic Monte Carlo methods: see chapters 2-3 from the book "Introducing Monte Carlo Methods with R" (2009), by Robert and CasellaFor the final grade: (i) counts 30%, (ii) counts 40%, and (iii) counts 30%.To pass the course, a minimum level of 45% has to be reached.Rating:
[85%; 100%]: 1.0
[70%; 85%): 2.0
[55%; 70%): 3.0
[45%; 55%): 4.0
[0; 45%): 5.0
Prüfungsstoff
Approximate syllabus:1. Introduction to stochastic calculus
2. Continuous-time pricing models
3. Volatility models: GARCH, realized volatility, stochastic volatility
4. State-space models and filtering methods (Kalman and particle filtering)
5. Markov Chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC)
6. Bayesian inference with particle MCMC and SMC squared algorithms
7. Empirical applications: estimation of option pricing models and DSGE models
2. Continuous-time pricing models
3. Volatility models: GARCH, realized volatility, stochastic volatility
4. State-space models and filtering methods (Kalman and particle filtering)
5. Markov Chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC)
6. Bayesian inference with particle MCMC and SMC squared algorithms
7. Empirical applications: estimation of option pricing models and DSGE models
Literatur
There is no unique textbook for this course. A mixture of book chapters and research papers will be relevant for the development of the material covered. A preliminary list is the following:Andrieu, C., Doucet, A. and Holenstein, R. (2010) “Particle Markov Chain Monte Carlo", Journal of the Royal Statistical Society, Series B, 72, 269–342Bjork, T. (2009): “Arbitrage theory in continuous-time”, Third edition, Oxford FinanceDoucet, A. and Johansen, A. M. (2008) “A tutorial on particle filtering and smoothing: Fifteen years later", Handbook of Nonlinear Filtering, 12, 656–704Durbin, J. and Koopman, S. J. (2012): “Time series analysis by state-space methods'', Oxford University PressFulop, A. and Li, J. (2013) “Efficient learning via simulation: a marginalized resample-move approach", Journal of Econometrics, 176, 146–161Gouriéroux, C. and A. Monfort (1996): “Simulation-Based Econometric Methods", Oxford University PressGreenberg, E. (2008): “Introduction to Bayesian Econometrics", Cambridge University PressHautsch, N. (2012): “Econometrics of Financial High-Frequency Data”, SpringerHerbst, E. and Schorfheide, F. (2015): “Bayesian Estimation of DSGE Models", Princeton University PressHull, J. C. (2012): "Options, Futures, and Other Derivatives", Global EditionOsterlee, C. W. and Grzelak, L. A. (2019): “Mathematical Modeling and Computation in Finance", World Scientific Pub Co IncRobert, C. P. and Casella, G. (2009) “Introducing Monte Carlo Methods with R“, SpringerSärkkä, S. and Svensson, L. (2023): “Bayesian Filtering and Smoothing", Second Edition. Cambridge University Press
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Mo 27.11.2023 15:27