Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
040182 KU Implementation of Optimization Techniques - Teil 1 (MA) (2021S)
Prüfungsimmanente Lehrveranstaltung
Labels
DIGITAL
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Do 11.02.2021 09:00 bis Mo 22.02.2021 12:00
- Anmeldung von Do 25.02.2021 09:00 bis Fr 26.02.2021 12:00
- Abmeldung bis Mi 31.03.2021 23:59
Details
max. 35 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Mittwoch 03.03. 11:30 - 13:00 Digital
- Mittwoch 10.03. 11:30 - 13:00 Digital
- Mittwoch 17.03. 11:30 - 13:00 Digital
- Mittwoch 24.03. 11:30 - 13:00 Digital
- Mittwoch 14.04. 11:30 - 13:00 Digital
- Mittwoch 21.04. 11:30 - 13:00 Digital
- Mittwoch 28.04. 11:30 - 13:00 Digital
- Mittwoch 05.05. 11:30 - 13:00 Digital
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
* [100%] Homework/Projects: Programming Exercises & Theory questions
Attempts of cheating might be penalized by deducting up to twice as many points as the exercise is worth. In severe cases, cheating (copying code) may even lead to failing the course and an entry of “X” in the record of exams.
The amount of work for the programming exercises increases throughout the course. The achievable points for the exercises are therefore weighted according to their workload (i.e. exercises at the beginning of the course are worth less points than exercises at the end of the course).
Attempts of cheating might be penalized by deducting up to twice as many points as the exercise is worth. In severe cases, cheating (copying code) may even lead to failing the course and an entry of “X” in the record of exams.
The amount of work for the programming exercises increases throughout the course. The achievable points for the exercises are therefore weighted according to their workload (i.e. exercises at the beginning of the course are worth less points than exercises at the end of the course).
Mindestanforderungen und Beurteilungsmaßstab
In order to obtain a positive grade on the course, at least 50% of the overall points have to be achieved, and at least 50% of the projects have to be positive. The other grades are distributed as follows:
1: >87% to 100%
2: >75% to <87.5%
3: >63% to <75%
4: >50% to <62.5%
1: >87% to 100%
2: >75% to <87.5%
3: >63% to <75%
4: >50% to <62.5%
Prüfungsstoff
* Basic concepts of the C# programming language (data types and operators, methods, classes, loops, input and output with files, arrays)
* Implementation of programs that make use of the mentioned concepts of C#
* Implementation of programs that make use of the mentioned concepts of C#
Literatur
The teaching material (slides, exercises, sample solutions, etc.) is available on the e-learning platform Moodle.
In order to access this material you need a valid UNET account. Moodle weblogin: https://moodle.univie.ac.at/
Useful links:
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/intro-to-csharp/
https://dotnet.microsoft.com/learn/csharp
https://www.tutorialspoint.com/csharp/index.htm
https://www.tutorialsteacher.com/csharp/csharp-tutorials
In order to access this material you need a valid UNET account. Moodle weblogin: https://moodle.univie.ac.at/
Useful links:
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/intro-to-csharp/
https://dotnet.microsoft.com/learn/csharp
https://www.tutorialspoint.com/csharp/index.htm
https://www.tutorialsteacher.com/csharp/csharp-tutorials
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Fr 12.05.2023 00:12
The course covers following topics:
* Get familiar with Microsoft Visual Studio
* Basic concepts of the C# programming language (data types and operators, methods, classes, loops, input and output with files, arrays)
* Methodological knowledge for developing algorithms and their translation into C# (a step by step approach to select suitable data and program structures)
* Simple to slightly advanced programs, including the Nearest Neighbor Algorithm for the TSP