Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
040187 KU Financial Markets and Information (MA) (2021S)
Prüfungsimmanente Lehrveranstaltung
Labels
DIGITAL
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Do 11.02.2021 09:00 bis Mo 22.02.2021 12:00
- Anmeldung von Do 25.02.2021 09:00 bis Fr 26.02.2021 12:00
- Abmeldung bis Mi 31.03.2021 23:59
Details
max. 50 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
The course starts digitally on Thursday, 4 March 2021 at 1.15 pm.
Final Exam: Wednesday, 30th of June, 13.15 - 14.45
- Donnerstag 04.03. 13:15 - 14:45 Digital
- Donnerstag 11.03. 13:15 - 14:45 Digital
- Donnerstag 18.03. 13:15 - 14:45 Digital
- Donnerstag 25.03. 13:15 - 14:45 Digital
- Donnerstag 15.04. 13:15 - 14:45 Digital
- Donnerstag 22.04. 13:15 - 14:45 Digital
- Donnerstag 29.04. 13:15 - 14:45 Digital
- Donnerstag 06.05. 13:15 - 14:45 Digital
- Donnerstag 20.05. 13:15 - 14:45 Digital
- Donnerstag 27.05. 13:15 - 14:45 Digital
- Mittwoch 02.06. 13:15 - 14:45 Digital
- Donnerstag 10.06. 13:15 - 14:45 Digital
- Donnerstag 17.06. 13:15 - 14:45 Digital
- Donnerstag 24.06. 13:15 - 14:45 Digital
- Mittwoch 30.06. 13:15 - 14:45 Digital
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
The evaluation in this course will be based on four components:
The first component is a group presentation. In each week, starting week 3, a group of students presents the solution to a specified problem on the problem set at the beginning of the lecture.
The second component is a participation-based grade. The hand-in of a problem set is required for at least 8 weeks in the semester (out of 10 possible dates). When the problem set scores half of the possible points and minimum standards of lecture participation are met, full points are assigned.
The third and fourth components are a midterm exam in the eighth session and a final exam at the end of the course.
The first component is a group presentation. In each week, starting week 3, a group of students presents the solution to a specified problem on the problem set at the beginning of the lecture.
The second component is a participation-based grade. The hand-in of a problem set is required for at least 8 weeks in the semester (out of 10 possible dates). When the problem set scores half of the possible points and minimum standards of lecture participation are met, full points are assigned.
The third and fourth components are a midterm exam in the eighth session and a final exam at the end of the course.
Mindestanforderungen und Beurteilungsmaßstab
7% Group Presentation8% Problem Set Hand-in40% Mid-term Exam45% Final Exam
Prüfungsstoff
The midterm exam covers weeks 1-6 and the final exam covers all course content, with a focus on the course content not covered in the midterm.
Literatur
Vives, Xavier. Information and Learning in Markets: The Impact of Market Microstructure. Princeton University Press, 2010.
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Fr 12.05.2023 00:12
The course splits up in four different parts. In the first part we introduce the optimal learning and information updating when receiving signals. First, we cover Bayes’ rule and continue with filtering information about a fundamental out of signals we observe. We study the Kalman filter as an optimal linear filter.
In the second part, we consider, how information gets included and is reflected in prices. In this part, we study competitive models in which individual traders do not move prices. In this context, the rational expectations equilibrium (fully revealing, partially revealing, noisy information) plays a key role. We will also cover costly information acquisition and the Grossman-Stiglitz paradox. Herding and social learning conclude this part.
The third part covers strategic market models, in which one informed agent’s information can change prices. We investigate the relationship between price impact and the market mechanism design. The timing of information, the number of informed traders and market clearing mechanisms are important factors to consider.
In the fourth part, we cover behavioral information processing. As individuals tend to follow heuristics or make mistakes in their information processing, we examine well documented shortcomings in individual information processing and their impact on financial markets. Overconfidence and learning from experience will play a key role in our study of behavioral learning.