Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
040195 KU Data Analysis on Organization and Personell (MA) (2019W)
Prüfungsimmanente Lehrveranstaltung
Labels
service email address: opim.bda@univie.ac.at
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 16.09.2019 09:00 bis Mo 23.09.2019 12:00
- Anmeldung von Do 26.09.2019 09:00 bis Fr 27.09.2019 12:00
- Abmeldung bis Mo 14.10.2019 12:00
Details
max. 30 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Donnerstag 10.10. 11:30 - 14:45 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Donnerstag 17.10. 11:30 - 14:45 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Donnerstag 24.10. 11:30 - 14:45 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Donnerstag 31.10. 11:30 - 14:45 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 20.11. 09:45 - 20:00 Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Stock
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
This course introduces students to regression tools for analyzing data in management, economics, finance and related disciplines. Extensions include regression with discrete random variables, instrumental variables regression, and regression with time series data. The objective of the course is for the student to learn how to conduct – and how to critique – empirical studies in management, economics, finance and related fields. Accordingly, the emphasis of the course is on empirical applications. The mathematics of econometric will be introduced only as needed and will not be a central focus. Upon completion of the course, students will be able to undertake regression analysis and inference on a variety of hypotheses involving cross-sectional and time series data.
Art der Leistungskontrolle und erlaubte Hilfsmittel
Following content will be covered in class,
-Introduction to Stata, Descriptive Statistics
-Correlation, T-test, Hypothesis Testing
-Univariate OLS Regression
-Multivariate OLS Regression, Dummy variable
-Logit ModelYour final grade is determined by your performance on the in class participation, assignments and presentation.
Make-up exams will not be given unless the student has a medical or other serious reason.
Students should hand in homework assignments before class on the day they are due. Assignments will be distributed in class or on line. each student must write up his or her answers separately.Passing grades can generally not be earned by students who miss more than 10% of the total class-time.
Exam review is possible during regular semester time by appointment.
-Introduction to Stata, Descriptive Statistics
-Correlation, T-test, Hypothesis Testing
-Univariate OLS Regression
-Multivariate OLS Regression, Dummy variable
-Logit ModelYour final grade is determined by your performance on the in class participation, assignments and presentation.
Make-up exams will not be given unless the student has a medical or other serious reason.
Students should hand in homework assignments before class on the day they are due. Assignments will be distributed in class or on line. each student must write up his or her answers separately.Passing grades can generally not be earned by students who miss more than 10% of the total class-time.
Exam review is possible during regular semester time by appointment.
Mindestanforderungen und Beurteilungsmaßstab
Basic knowledge of Business Mathematics and Statistics are required.
Prüfungsstoff
assignments, final presentation, class attendance and participation.
Literatur
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Mo 07.09.2020 15:19