040195 KU Data Analysis on Organization and Personnel (MA) (2024W)
Prüfungsimmanente Lehrveranstaltung
Labels
service email address: opim.bda@univie.ac.at
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 09.09.2024 09:00 bis Do 19.09.2024 12:00
- Anmeldung von Mi 25.09.2024 09:00 bis Do 26.09.2024 12:00
- Abmeldung bis Mo 14.10.2024 23:59
Details
max. 24 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Donnerstag 03.10. 09:45 - 14:45 PC-Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Freitag 04.10. 09:45 - 14:45 PC-Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Donnerstag 31.10. 09:45 - 14:40 PC-Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Dienstag 05.11. 09:45 - 14:45 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Freitag 24.01. 14:15 - 15:45 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
The final grade will be based on assignments, presentations, and active in class participation. Attendance during the lectures is mandatory.The use of AI tools (e.g. ChatGPT) for the production of texts is not allowed.
Mindestanforderungen und Beurteilungsmaßstab
Basic knowledge of Business Mathematics and Statistics are required.
Passing grades can generally not be earned by students who miss more than 10% of the total class-time.
1 (sehr gut) → 100-89 poins
2 (gut) → 88-76 poins
3 (befriedigend) → 75-63 poins
4 (genügend) → 62-50 poins
5 (nicht genügend) → 49-0 poins
Passing grades can generally not be earned by students who miss more than 10% of the total class-time.
1 (sehr gut) → 100-89 poins
2 (gut) → 88-76 poins
3 (befriedigend) → 75-63 poins
4 (genügend) → 62-50 poins
5 (nicht genügend) → 49-0 poins
Prüfungsstoff
The final grade will be based on assignments, presentations, in class discussion and participation. Attendance during the lectures is mandatory.The use of AI tools (e.g. ChatGPT) for the production of texts is not allowed.
Literatur
Wooldridge „Introductory Econometrics“
– Chapters 1-8, 15, 17
Peter Kennedy „A guide to Econometrics“
– Chapters 1-12, 16, 17
Kohler/Kreuter „Data Analysis using Stata“
– Chapter 8 and 9
– Chapters 1-8, 15, 17
Peter Kennedy „A guide to Econometrics“
– Chapters 1-12, 16, 17
Kohler/Kreuter „Data Analysis using Stata“
– Chapter 8 and 9
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Mo 24.03.2025 12:45
The aim of this course is to provide participants with an understanding of the quantitative research process from hypotheses development to testing the hypotheses with the appropriate statistical methods.Goal: Upon completion of the course, participants should be able to conduct their own study and analyses data sets with a variety of statistical methods. Discussed topics include:• Developing and testing hypotheses
• Introduction to univariate and multivariate methods
• Regression analysisThe emphasis is on empirical applications and the mathematics of econometric will be introduced only as needed.