040217 KU Data Analysis on Organization and Personell (MA) (2022S)
Labels
An/Abmeldung
- Anmeldung von Mo 07.02.2022 09:00 bis Mo 21.02.2022 23:59
- Anmeldung von Do 24.02.2022 09:00 bis Fr 25.02.2022 23:59
- Abmeldung bis Mo 14.03.2022 23:59
Details
Lehrende
Termine
MI 02.03.2022 11.30-14.45 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß (Bestätigt)
MI 09.03.2022 11.30-14.45 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß (Bestätigt)
MI 23.03.2022 11.30-14.45 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß (Bestätigt)
MI 30.03.2022 11.30-14.45 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß (Bestätigt)
MI 06.04.2022 09.45-11.15 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß (Bestätigt)
MI 06.04.2022 11.30-14.45 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß (Bestätigt)
MI 06.04.2022 15.00-16.30 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß (Bestätigt)
MI 06.04.2022 16.45-20.00 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß (Bestätigt)
DO 07.04.2022 09.45-11.15 Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Stock (Bestätigt)
DO 07.04.2022 11.30-13.00 Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Stock (Bestätigt)
DO 07.04.2022 13.15-14.45 Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Stock (Bestätigt)
DO 07.04.2022 15.00-16.30 Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Stock (Bestätigt)
DO 07.04.2022 16.45-18.15 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock (Bestätigt)
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Make-up exams will not be given unless the student has a medical or other serious reason.
Students should hand in homework assignments before class on the day they are due. Assignments will be distributed in class or on line. each student must write up his or her answers separately.
Exam review is possible during regular semester time by appointment.
Mindestanforderungen und Beurteilungsmaßstab
Your final grade is determined by your performance on the quizzes, assignments, presentations, final essay and class participation.
Passing grades can generally not be earned by students who miss more than 20% of the total class-time.
Make-up exams will not be given unless the student has a medical or other serious reason.
Assignments will be distributed in class or on line. each student must write up his or her answers separately.
Prüfungsstoff
Literatur
– Chapters 1-8, 15, 17
Peter Kennedy „A guide to Econometrics“
– Chapters 1-12, 16, 17
Kohler/Kreuter „Data Analysis using Stata“
– Chapter 8 and 9
Goal: Upon completion of the course, students should be able to undertake regression analysis and inference on a variety of hypotheses involving cross-sectional and time series data.
This course introduces students to regression tools for analyzing data in economics, finance and related disciplines. Extensions include regression with discrete random variables, instrumental variables regression, quasi-experiments, and regression with time series data. The objective of the course is for the student to learn how to conduct – and how to critique – empirical studies in economics, finance and related fields. Accordingly, the emphasis of the course is on empirical applications. The mathematics of econometrics will be introduced only as needed and will not be a central focus.