Universität Wien
Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.

040268 KU Building Blocks of Marketing 2: Quantitative Methods (MA) (2024W)

4.00 ECTS (2.00 SWS), SPL 4 - Wirtschaftswissenschaften
Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 24 Teilnehmer*innen
Sprache: Deutsch, Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

  • Dienstag 08.10. 11:30 - 13:00 PC-Seminarraum 1 Oskar-Morgenstern-Platz 1 1.Untergeschoß
  • Dienstag 15.10. 11:30 - 13:00 PC-Seminarraum 1 Oskar-Morgenstern-Platz 1 1.Untergeschoß
  • Dienstag 22.10. 11:30 - 13:00 PC-Seminarraum 1 Oskar-Morgenstern-Platz 1 1.Untergeschoß
  • Dienstag 29.10. 11:30 - 13:00 PC-Seminarraum 1 Oskar-Morgenstern-Platz 1 1.Untergeschoß
  • Dienstag 05.11. 11:30 - 13:00 PC-Seminarraum 1 Oskar-Morgenstern-Platz 1 1.Untergeschoß
  • Dienstag 12.11. 11:30 - 13:00 PC-Seminarraum 1 Oskar-Morgenstern-Platz 1 1.Untergeschoß
  • Dienstag 19.11. 11:30 - 13:00 PC-Seminarraum 1 Oskar-Morgenstern-Platz 1 1.Untergeschoß
  • Dienstag 26.11. 11:30 - 13:00 PC-Seminarraum 1 Oskar-Morgenstern-Platz 1 1.Untergeschoß
  • Dienstag 03.12. 11:30 - 13:00 PC-Seminarraum 1 Oskar-Morgenstern-Platz 1 1.Untergeschoß
  • Dienstag 10.12. 11:30 - 13:00 PC-Seminarraum 1 Oskar-Morgenstern-Platz 1 1.Untergeschoß
  • Dienstag 17.12. 11:30 - 13:00 PC-Seminarraum 1 Oskar-Morgenstern-Platz 1 1.Untergeschoß
  • Dienstag 07.01. 11:30 - 13:00 PC-Seminarraum 1 Oskar-Morgenstern-Platz 1 1.Untergeschoß
  • Dienstag 14.01. 11:30 - 13:00 PC-Seminarraum 1 Oskar-Morgenstern-Platz 1 1.Untergeschoß
  • Dienstag 21.01. 11:30 - 13:00 PC-Seminarraum 1 Oskar-Morgenstern-Platz 1 1.Untergeschoß
  • Dienstag 28.01. 11:30 - 13:00 PC-Seminarraum 1 Oskar-Morgenstern-Platz 1 1.Untergeschoß

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

Participants will get to know the most common quantitative methods and analytical techniques that are used in management and marketing research. They will learn how to analyze data and perform statistical analysis with SPSS. They will further learn how to evaluate and interpret quantitative analysis procedures and results that are performed by scholars and by research institutions (e.g., market research companies).

The primary objective of the course will be achieved through on-site meetings. Students will follow the lecture and complete several computer assignments under the supervision of the instructor. Lectures typically provide background knowledge in understanding the theory and logic behind quantitative methods and analytical techniques and then illustrate how to interpret quantitative methods and corresponding results. The computer assignments contain practical applications of quantitative methods and data analysis.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Students’ performance in the course is assessed through two assignments (30% each) and a com-prehensive, final exam (40%).

Mindestanforderungen und Beurteilungsmaßstab

In total, a minimum of 50 percent is needed to pass the course. The grading system is as follows: 0 to 49% - grade 5, 50 to 59% - grade 4, 60 to 69% - grade 3, 70 to 79% - grade 2, 80 to 100% - grade 1.
Please note: Policies regarding academic integrity must be followed. Any transgressions will be pun-ished. If issues of academic integrity arise in this course, please talk to the instructor immediately.

Prüfungsstoff

The exam covers all topics discussed in the lectures and illustrated and practiced during the assignments.

Literatur

During the tutorials, students will work with a data set that deals with the impact of TV viewing on beauty beliefs and beauty-related behavior and has been used for a paper published in 2007. All participants need to read the following paper by the second session:
Eisend M, Möller J, 2007, The Influence of TV Viewing on Consumers’ Body Images and Related Consumption Behavior, Marketing Letters, 18, 101-116.

It is strongly recommended to refer to further literature such as:
• Diamantopoulos D, Schlegelmilch B, Halkias G., 2023, Taking the Fear out of Data Analysis: Com-pletely Revised, Significantly Extended and Still Fun, 3nd ed., Edward Elgar.
• Hair JF, Black B, Babin B, Anderson RE, 2013, Multivariate Data Analysis. International Edition, 7th ed, Pearson.
• Malhotra N, Nunan D, Birks, DF, 2017, Marketing Research. An Applied Approach, 5th ed, Pear-son.

Zuordnung im Vorlesungsverzeichnis

Letzte Änderung: Mo 09.09.2024 10:45