040796 VO Höhere Analysis (2009W)
Labels
Details
max. 50 Teilnehmer*innen
Sprache: Deutsch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Freitag 09.10. 13:00 - 15:30 Leopold-Schmetterer-Seminarraum, Universitätsstraße 5, 3.Stock
- Freitag 16.10. 13:00 - 15:30 Leopold-Schmetterer-Seminarraum, Universitätsstraße 5, 3.Stock
- Freitag 23.10. 13:00 - 15:30 Leopold-Schmetterer-Seminarraum, Universitätsstraße 5, 3.Stock
- Freitag 30.10. 13:00 - 15:30 Leopold-Schmetterer-Seminarraum, Universitätsstraße 5, 3.Stock
- Freitag 06.11. 13:00 - 15:30 Leopold-Schmetterer-Seminarraum, Universitätsstraße 5, 3.Stock
- Freitag 13.11. 13:00 - 15:30 Leopold-Schmetterer-Seminarraum, Universitätsstraße 5, 3.Stock
- Freitag 20.11. 13:00 - 15:30 Leopold-Schmetterer-Seminarraum, Universitätsstraße 5, 3.Stock
- Freitag 27.11. 13:00 - 15:30 Leopold-Schmetterer-Seminarraum, Universitätsstraße 5, 3.Stock
- Freitag 04.12. 13:00 - 15:30 Leopold-Schmetterer-Seminarraum, Universitätsstraße 5, 3.Stock
- Freitag 11.12. 13:00 - 15:30 Leopold-Schmetterer-Seminarraum, Universitätsstraße 5, 3.Stock
- Freitag 18.12. 13:00 - 15:30 Leopold-Schmetterer-Seminarraum, Universitätsstraße 5, 3.Stock
- Freitag 08.01. 13:00 - 15:30 Leopold-Schmetterer-Seminarraum, Universitätsstraße 5, 3.Stock
- Freitag 15.01. 13:00 - 15:30 Leopold-Schmetterer-Seminarraum, Universitätsstraße 5, 3.Stock
- Freitag 22.01. 13:00 - 15:30 Leopold-Schmetterer-Seminarraum, Universitätsstraße 5, 3.Stock
- Freitag 29.01. 13:00 - 15:30 Leopold-Schmetterer-Seminarraum, Universitätsstraße 5, 3.Stock
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Mindestanforderungen und Beurteilungsmaßstab
Prüfungsstoff
Literatur
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Mo 07.09.2020 15:29
- Grundlagen (Maschinenzahlen, Fix-,Gleitkommadarstellung, Gleitkommaoperationen, Konditionszahlen, Algorithmen und Fehlerfortpflanzung)
- Nullstellen- und Fixpunktbestimmung (Kontraktion, Fixpunktsatz von Banach, Iterationsverfahren, Ordnung eines solchen, Newtonverfahren, Sekantenverfahren, Regula falsi)
- Gradientenverfahren zur Extremwertbestimmung
- Numerisches Lösen von linearen Gleichungssystemen (Jacobi, Gauß-Seidel, Gradientenverfahren, Verfahren konjugierter Richtungen, Verfahren konjugierter Gradienten)
- Cholesky-Zerlegung
- Gershgorin-Kreise
- Interpolation
--- Polynome: Formel von Lagrange, Verfahren von Neville und Aitken, Newton-Formel,
Fehlerabschätzung bei Polynominterpolation
--- rationale Funktionen
--- Hermite-Interpolation
- Approximation
--- Bernstein-Polynome (als Hilfsmittel zum Beweis des Approximationssatzes von Weierstrass für Polynome und trigonometrische Polynome)
--- Tschebyschew-Polynome
--- Splines
- Numerische Integration (Newton-Cotes-Formeln: Sehnen-, Kepler-, Tangenten-Regel mit Fehlerabschätzung)
II. Transformationssatz
- für Integrale
- für Dichten (Polar-, Kugel-, Zylinderkoordinaten, Berechnung der Normierungs-konstanten für Standard-Normalverteilung)
- Anwendungen in der Mathematischen Statistik (Herleitung der Dichten von Chi^2-, t-, F-Verteilung, lineare Transformation und Randverteilungen eines normalverteilten Vektors)