Universität Wien
Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.

040894 KU LP Modeling I (MA) (2019S)

4.00 ECTS (2.00 SWS), SPL 4 - Wirtschaftswissenschaften
Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 35 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

  • Donnerstag 07.03. 09:45 - 13:00 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
  • Donnerstag 14.03. 09:45 - 13:00 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
  • Donnerstag 21.03. 09:45 - 13:00 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
  • Mittwoch 27.03. 13:15 - 14:45 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Donnerstag 28.03. 09:45 - 13:00 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
  • Donnerstag 04.04. 09:45 - 13:00 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
  • Donnerstag 11.04. 09:45 - 13:00 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
  • Donnerstag 02.05. 11:30 - 13:00 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

The course introduces students to modeling techniques in the area of linear programming. To gain a better understanding about the underlying problems and solution techniques the following topics will be discussed:

Introduction to Linear Programming
Introduction to XPress-MP
Simplex Method (brief repetition)
Sensitivity Analysis & its economic interpretation
Introduction to (mixed) integer programming

The classes will consist of a lecture part, a discussion of the homework assignments, and programming on the computers in the lab by the students.

Art der Leistungskontrolle und erlaubte Hilfsmittel

25 % homework
35 % midterm exam (closed book) (date March, 27th, 2019)
40 % final exam (closed book) (date May, 2nd, 2019)

Mindestanforderungen und Beurteilungsmaßstab

In order to pass the course (minimum requirement) students have to achieve at least 50% in total.

The other grades are distributed as follows:
4: 50% to <63%
3: 63% to <75%
2: 75% to <87%
1: 87% to 100%

Prüfungsstoff

Students are expected to be able to understand, formulate and solve a variety of LP models in the exam and implement them using Mosel / XpressMP. Slides will be available in Moodle.

Content of the exams:
- Formulation of LP models
- Graphical solution method
- The Simplex algorithm
- Duality
- Sensitivity analysis
- Mosel / XPress
- Branch-and-bound
- Modeling with binary variables
- Formulation of specific objectives

The final exam will additionally include parts where students need to show the implementation skills acquired during lessons and homework by writing Mosel code on paper (e.g. how the implementation of a certain constraint would look like, how one has to declare variables, etc.) and by explaining a given Mosel code and/or finding errors in it.

Literatur

* Bertsimas, D., & Tsitsiklis, J. N. (1997). Introduction to linear optimization. Athena Scientific.
* Papadimitriou, C. H., & Steiglitz, K. (1998). Combinatorial Optimization: Algorithms and Complexity. Dover Publications.
* Guéret, C., Prins, C., & Sevaux, M. (2002). Applications of optimisation with Xpress-MP. Dash optimization.
* Hillier, F. S., & Lieberman, G. J. Introduction to Operations Research. McGraw-Hill.
* Anderson, D. R., Sweeney, D. J. An introduction to management science: quantitative approaches to decision making. South-Western.

Zuordnung im Vorlesungsverzeichnis

Letzte Änderung: Mo 07.09.2020 15:29