040894 KU LP Modeling I (MA) (2021S)
Prüfungsimmanente Lehrveranstaltung
Labels
DIGITAL
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Do 11.02.2021 09:00 bis Mo 22.02.2021 12:00
- Anmeldung von Do 25.02.2021 09:00 bis Fr 26.02.2021 12:00
- Abmeldung bis Mi 31.03.2021 23:59
Details
max. 35 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Donnerstag 04.03. 09:45 - 11:15 Digital
- Donnerstag 04.03. 11:30 - 13:00 Digital
- Donnerstag 11.03. 09:45 - 11:15 Digital
- Donnerstag 11.03. 11:30 - 13:00 Digital
- Donnerstag 18.03. 09:45 - 11:15 Digital
- Donnerstag 18.03. 11:30 - 13:00 Digital
- Donnerstag 25.03. 09:45 - 11:15 Digital
- Donnerstag 25.03. 11:30 - 13:00 Digital
- Mittwoch 14.04. 09:45 - 11:15 Digital
- Donnerstag 15.04. 09:45 - 11:15 Digital
- Donnerstag 15.04. 11:30 - 13:00 Digital
- Donnerstag 22.04. 09:45 - 11:15 Digital
- Donnerstag 29.04. 09:45 - 11:15 Digital
- Mittwoch 05.05. 09:45 - 11:15 Digital
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
20 % homework
40 % midterm exam (open book, online) (date April, 14th, 2021)
40 % final exam (open book, online) (date May, 5th, 2021)Students have to upload the solutions to their homework in Moodle. (updated)
40 % midterm exam (open book, online) (date April, 14th, 2021)
40 % final exam (open book, online) (date May, 5th, 2021)Students have to upload the solutions to their homework in Moodle. (updated)
Mindestanforderungen und Beurteilungsmaßstab
In order to pass the course (minimum requirement) students have to achieve at least 50% in total.The other grades are distributed as follows:
4: 50% to <63%
3: 63% to <75%
2: 75% to <87%
1: 87% to 100%
4: 50% to <63%
3: 63% to <75%
2: 75% to <87%
1: 87% to 100%
Prüfungsstoff
Students are expected to be able to understand, formulate and solve a variety of LP models in the exam and implement them using Mosel / XpressMP. Slides will be available in Moodle.Content of the exams:
- Formulation of LP models
- Solution methods
- Duality
- Sensitivity analysis
- Mosel / XPress
- Branch-and-bound
- Modeling with binary variables
- Formulation of specific objectivesThe final exam will additionally include parts where students need to show the implementation skills acquired during lessons and homework by writing Mosel code on paper (e.g. how the implementation of a certain constraint would look like, how one has to declare variables, etc.) and by explaining a given Mosel code and/or finding errors in it.
- Formulation of LP models
- Solution methods
- Duality
- Sensitivity analysis
- Mosel / XPress
- Branch-and-bound
- Modeling with binary variables
- Formulation of specific objectivesThe final exam will additionally include parts where students need to show the implementation skills acquired during lessons and homework by writing Mosel code on paper (e.g. how the implementation of a certain constraint would look like, how one has to declare variables, etc.) and by explaining a given Mosel code and/or finding errors in it.
Literatur
* Bertsimas, D., & Tsitsiklis, J. N. (1997). Introduction to linear optimization. Athena Scientific.
* Papadimitriou, C. H., & Steiglitz, K. (1998). Combinatorial Optimization: Algorithms and Complexity. Dover Publications.
* Guéret, C., Prins, C., & Sevaux, M. (2002). Applications of optimisation with Xpress-MP. Dash optimization.
* Hillier, F. S., & Lieberman, G. J. Introduction to Operations Research. McGraw-Hill.
* Anderson, D. R., Sweeney, D. J. An introduction to management science: quantitative approaches to decision making. South-Western.
* Papadimitriou, C. H., & Steiglitz, K. (1998). Combinatorial Optimization: Algorithms and Complexity. Dover Publications.
* Guéret, C., Prins, C., & Sevaux, M. (2002). Applications of optimisation with Xpress-MP. Dash optimization.
* Hillier, F. S., & Lieberman, G. J. Introduction to Operations Research. McGraw-Hill.
* Anderson, D. R., Sweeney, D. J. An introduction to management science: quantitative approaches to decision making. South-Western.
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Fr 12.05.2023 00:13
Introduction to XPress-MP
Solution methods
Duality
Sensitivity Analysis & its economic interpretation
Introduction to (mixed) integer programmingStudents, who take the course, are assumed to have a basic math knowledge (solving equation systems, working with inequalities, matrix multiplication).