Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
040894 KU LP Modeling I (MA) (2024W)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 09.09.2024 09:00 bis Do 19.09.2024 12:00
- Anmeldung von Mi 25.09.2024 09:00 bis Do 26.09.2024 12:00
- Abmeldung bis Mo 14.10.2024 23:59
Details
max. 30 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Montag 07.10. 13:15 - 16:30 PC-Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Montag 14.10. 13:15 - 16:30 PC-Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Montag 21.10. 13:15 - 16:30 PC-Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Montag 28.10. 13:15 - 14:45 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock
- Dienstag 29.10. 13:15 - 14:45 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Dienstag 29.10. 15:00 - 16:30 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Montag 04.11. 13:15 - 16:30 PC-Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Montag 11.11. 13:15 - 16:30 PC-Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Montag 18.11. 13:15 - 16:30 PC-Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Mittwoch 20.11. 13:15 - 14:45 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
20 % homework
40 % midterm exam (closed book, on-site) (date October, 28th, 2024)
40 % final exam (closed book, on-site) (date November, 20th, 2024)
40 % midterm exam (closed book, on-site) (date October, 28th, 2024)
40 % final exam (closed book, on-site) (date November, 20th, 2024)
Mindestanforderungen und Beurteilungsmaßstab
In order to pass the course (minimum requirement) students have to achieve at least 50% in total.The other grades are distributed as follows:
4: 50% to <63%
3: 63% to <75%
2: 75% to <87%
1: 87% to 100%
4: 50% to <63%
3: 63% to <75%
2: 75% to <87%
1: 87% to 100%
Prüfungsstoff
Students are expected to be able to understand, formulate and solve a variety of LP models in the exam and implement them using Mosel / XpressMP. Slides will be available in Moodle.Content of the exams:
- Formulation of LP models
- Graphical solution method
- The Simplex algorithm
- Duality
- Sensitivity analysis
- Mosel / XPress
- Branch-and-bound
- Modeling with binary variables
- Formulation of specific objectivesThe final exam will additionally include parts where students need to show the implementation skills acquired during lessons and homework (e.g. how the implementation of a certain constraint would look like, how one has to declare variables, etc.) and by explaining a given Mosel code and/or finding errors in it.
- Formulation of LP models
- Graphical solution method
- The Simplex algorithm
- Duality
- Sensitivity analysis
- Mosel / XPress
- Branch-and-bound
- Modeling with binary variables
- Formulation of specific objectivesThe final exam will additionally include parts where students need to show the implementation skills acquired during lessons and homework (e.g. how the implementation of a certain constraint would look like, how one has to declare variables, etc.) and by explaining a given Mosel code and/or finding errors in it.
Literatur
* Bertsimas, D., & Tsitsiklis, J. N. (1997). Introduction to linear optimization. Athena Scientific.
* Papadimitriou, C. H., & Steiglitz, K. (1998). Combinatorial Optimization: Algorithms and Complexity. Dover Publications.
* Guéret, C., Prins, C., & Sevaux, M. (2002). Applications of optimisation with Xpress-MP. Dash optimization.
* Hillier, F. S., & Lieberman, G. J. Introduction to Operations Research. McGraw-Hill.
* Anderson, D. R., Sweeney, D. J. An introduction to management science: quantitative approaches to decision making. South-Western.
* Papadimitriou, C. H., & Steiglitz, K. (1998). Combinatorial Optimization: Algorithms and Complexity. Dover Publications.
* Guéret, C., Prins, C., & Sevaux, M. (2002). Applications of optimisation with Xpress-MP. Dash optimization.
* Hillier, F. S., & Lieberman, G. J. Introduction to Operations Research. McGraw-Hill.
* Anderson, D. R., Sweeney, D. J. An introduction to management science: quantitative approaches to decision making. South-Western.
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Mo 02.09.2024 14:45
Introduction to Mosel / XPress-MP
Simplex Method
Sensitivity Analysis & its economic interpretation
Introduction to (mixed) integer programming
Modeling with binary variablesNew content will be provided weekly in class. Homework examples have to be solved individually. An introductory lesson (Oct. 21st) will be held for implementing simple LP models in Mosel. There will be an additional tutorial (Oct. 29th), where students can practice their implementation skills under supervision in the PC lab (attendance not mandatory).