Universität Wien
Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.

040975 UK Biometrie 1 (2022S)

3.00 ECTS (2.00 SWS), SPL 4 - Wirtschaftswissenschaften
Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 30 Teilnehmer*innen
Sprache: Deutsch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

  • Montag 07.03. 15:00 - 16:30 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock
  • Montag 14.03. 15:00 - 16:30 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock
  • Montag 21.03. 15:00 - 16:30 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock
  • Montag 28.03. 15:00 - 16:30 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock
  • Montag 04.04. 15:00 - 16:30 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock
  • Montag 25.04. 15:00 - 16:30 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock
  • Montag 02.05. 15:00 - 16:30 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock
  • Montag 09.05. 15:00 - 16:30 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock
  • Montag 16.05. 15:00 - 16:30 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock
  • Montag 23.05. 15:00 - 16:30 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock
  • Montag 30.05. 15:00 - 16:30 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock
  • Montag 13.06. 15:00 - 16:30 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock
  • Montag 20.06. 15:00 - 16:30 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock
  • Montag 27.06. 15:00 - 16:30 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

Theorie und Anwendungen (speziell in der Medizin) von Mixed Models

Kapitelübersicht:
1) ML Theorie (Score Test, Wald Test, LR Test)
2) Theorie für Mixed Models anhand von einfachster Random Effects ANOVA
- ML und REML Schätzer
- Prediction
3) Allgemeines Lineares Mixed Model (LMM)
- ML und REML
- BLUP
- Henderson equations
- Tests für Varianzkomponenten
4) Longitudinale Daten
5) GLMM
6) Mixed Models mit R

Art der Leistungskontrolle und erlaubte Hilfsmittel

Kreuzerlübungen mit Minitests
Ausarbeitung eines Beispiels mit Daten

Mindestanforderungen und Beurteilungsmaßstab

Die Note für die Übungen setzt sich aus 3 Komponenten zusammen:

1. Komponente: Prozentzahl der angekreuzten Beispiele (x)

* X < 50% 0 Punkte
* 50 - 55% 0,5 Punkte
* 55 - 60% 1 Punkt
* 60 - 65% 1,5 Punkte
* 65 - 70% 2 Punkte
* 70 - 75% 2,5 Punkte
* 75 - 80% 3 Punkte
* 80 - 90% 3,5 Punkte
* 90 - 100% 4 Punkte

2. Komponente: Beurteilung der schriftlichen Leistung bei den Minitests (Maximal 3 Punkte)

3. Komponente: Ausarbeitung eines Beispiels, wo ich die Daten zur Verfügung stelle. Je nach Anzahl der TeilnehmerInnen 2er oder 3er Gruppen. Die Aufgabe wird so gestellt sein, dass man Mixed Models zur Analyse der Daten benötigt. (Maximal 4 Punkte)

Notenschlüssel:
> 9.5 Punkte: Sehr Gut.
> 8.5 Punkte: Gut
> 7 Punkte: Befriedigend
> 5.5 Punkte: Genügend
0 – 5.5 Punkte: Nicht Genügend

Prüfungsstoff

Entsprechend der Folien zur Lehrveranstaltung

Literatur

Leo Held: Methoden der statistischen Inferenz

McCulloch, Searle: Generalized, Linear and Mixed Models

Verbeke, Molenberghs: Linear Mixed Models for Longitudinal Data

Stroup: Generalized Linear Mixed Models

West, Welch, Galecki: Linear Mixed Models

Zuordnung im Vorlesungsverzeichnis

Letzte Änderung: Mo 07.03.2022 12:48