Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
040977 SE Seminar in Empirical Finance and Financial Econometrics (MA) (2025S)
Prüfungsimmanente Lehrveranstaltung
Labels
VOR-ORT
Achtung: wird anerkannt für Seminar aus Statistik im Magisterstudium für Studierende der Statistik
Seminar: siehe Homepage
Seminar: siehe Homepage
Details
max. 24 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- N Freitag 07.03. 15:00 - 16:30 Seminarraum 8, Kolingasse 14-16, OG01
- Freitag 14.03. 15:00 - 16:30 Seminarraum 8, Kolingasse 14-16, OG01
- Freitag 21.03. 15:00 - 16:30 Seminarraum 8, Kolingasse 14-16, OG01
- Freitag 04.04. 15:00 - 16:30 Seminarraum 8, Kolingasse 14-16, OG01
- Freitag 11.04. 15:00 - 16:30 Seminarraum 8, Kolingasse 14-16, OG01
- Freitag 02.05. 15:00 - 16:30 Seminarraum 8, Kolingasse 14-16, OG01
- Freitag 09.05. 15:00 - 16:30 Seminarraum 8, Kolingasse 14-16, OG01
- Freitag 23.05. 15:00 - 16:30 Seminarraum 8, Kolingasse 14-16, OG01
- Freitag 30.05. 15:00 - 16:30 Seminarraum 8, Kolingasse 14-16, OG01
- Freitag 06.06. 15:00 - 16:30 Seminarraum 8, Kolingasse 14-16, OG01
- Freitag 13.06. 15:00 - 16:30 Seminarraum 8, Kolingasse 14-16, OG01
- Freitag 20.06. 15:00 - 16:30 Seminarraum 8, Kolingasse 14-16, OG01
- Freitag 27.06. 15:00 - 16:30 Seminarraum 8, Kolingasse 14-16, OG01
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
The course will be taught in class. All necessary information and possible short-term announcements will be provided either in class or through the Moodle site of the course. Assessment is mainly based on a term project (possibly, performed in groups) and seminar participation (that might include several different activities). A project consists of a final paper (to be submitted in August and a presentation of the selected research question and intermediate results during the seminar (in May/June). The research question for a project is supposed to be selected individually and can be based on one of suggested methodological papers.
Mindestanforderungen und Beurteilungsmaßstab
As a prerequisite, it is expected that students
* have taken core courses in probability and statistics and/or econometrics
* are familiar with basic probabilistic and econometric concepts (e.g., LLN, CLT, stationarity, least squares estimator, maximum likelihood principle, etc.).
* have basic programming skills and experience with statistical analysis software like R or Python or otherThe grade will be based on the course project (intermediate presentation and final paper) and seminar participation. Intermediate project presentations will take place in May/June, during seminar meetings. The tentative deadline for the final project paper is August 14.The final grade is compiled as follows:
1) Project paper - 70%
2) Project presentations - 20%
3) Seminar participation - 10%
* have taken core courses in probability and statistics and/or econometrics
* are familiar with basic probabilistic and econometric concepts (e.g., LLN, CLT, stationarity, least squares estimator, maximum likelihood principle, etc.).
* have basic programming skills and experience with statistical analysis software like R or Python or otherThe grade will be based on the course project (intermediate presentation and final paper) and seminar participation. Intermediate project presentations will take place in May/June, during seminar meetings. The tentative deadline for the final project paper is August 14.The final grade is compiled as follows:
1) Project paper - 70%
2) Project presentations - 20%
3) Seminar participation - 10%
Prüfungsstoff
Preliminary list of topics:
1. Financial prices and returns. Stylized empirical facts.
2. Volatility and risk. GARCH models.
3. High frequency (intraday) data. Realized Variance estimator.
4. Dynamic models for Realized Variance. New generation of GARCH models.
5. Methods for model selection.
6. Factor Models, factor pricing models and high-dimensional time series
7. Forecasting financial time series (e.g. stock returns)
1. Financial prices and returns. Stylized empirical facts.
2. Volatility and risk. GARCH models.
3. High frequency (intraday) data. Realized Variance estimator.
4. Dynamic models for Realized Variance. New generation of GARCH models.
5. Methods for model selection.
6. Factor Models, factor pricing models and high-dimensional time series
7. Forecasting financial time series (e.g. stock returns)
Literatur
There will be no unique course textbook. Instead, research papers will be recommended as a source of relevant material for the projects.Some useful textbooks are:Campbell, J. Y., Lo, A. W., MacKinlay, A. C., & Whitelaw, R. F. (1998). The econometrics of financial markets (Princeton University Press).
Fan J. and Yao Q. (2015): The Elements of Financial Econometrics (Science Press).
Hautsch, N. (2012): Econometrics of Financial High-Frequency Data (Springer).
Taylor, S.J. (2005): Asset Price Dynamics, Volatility, and Prediction (Princeton University Press).
Tsay, R.S. (2010): Analysis of Financial Time Series: Financial Econometrics (Wiley, 3rd edition).Online literature for R:
Heiss, F., “Using R for Introductory Econometrics”, 2016, http://www.urfie.net
Hanck, C., Arnold, M., Gerber, A., and Schmelzer, M., 2019, https://www.econometrics-with-r.org/index.html
Wickham, Hadley, Mine Çetinkaya-Rundel, and Garrett Grolemund. R for data science. " O'Reilly Media, Inc.", 2023. https://r4ds.hadley.nz/
Fan J. and Yao Q. (2015): The Elements of Financial Econometrics (Science Press).
Hautsch, N. (2012): Econometrics of Financial High-Frequency Data (Springer).
Taylor, S.J. (2005): Asset Price Dynamics, Volatility, and Prediction (Princeton University Press).
Tsay, R.S. (2010): Analysis of Financial Time Series: Financial Econometrics (Wiley, 3rd edition).Online literature for R:
Heiss, F., “Using R for Introductory Econometrics”, 2016, http://www.urfie.net
Hanck, C., Arnold, M., Gerber, A., and Schmelzer, M., 2019, https://www.econometrics-with-r.org/index.html
Wickham, Hadley, Mine Çetinkaya-Rundel, and Garrett Grolemund. R for data science. " O'Reilly Media, Inc.", 2023. https://r4ds.hadley.nz/
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Do 23.01.2025 11:45
Preliminary list of topics:
* Financial prices and returns. Stylized empirical facts.
* Volatility and risk. GARCH models.
* High frequency (intraday) data. Realized Variance estimator, GARCH and RV
* Capital Asset Pricing Model, factor pricing models, dynamic and static factor sequences and high-dimensional time series
* Forecasting financial time series (e.g. stock returns)
* Methods for model selection