Universität Wien

050079 UE Grundlagen der digitalen Bildverarbeitung (2015S)

Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 25 Teilnehmer*innen
Sprache: Deutsch

Lehrende

Termine

Achtung - die Vorbesprechung zur dieser LV findet bereits am Mo., 02.03.2015 um 17:00 im Hörsaal des CeMSIIS statt!!!
Achtung - geänderte Abhaltezeiten!!!
DI wtl von 03.03.2015 bis 30.06.2015 immer 16.30-18.00 Ort: Schulungsraum d. CeMSIIS, RNr. 88.03.512; Ausnahme: 03.03.2015 und 10.03.2015, abweichender Ort: Seminarraum d. CeMSIIS, RNr. 88.03.513; Ausnahme 05.05.2015, abweichender Termin: verschoben auf 27.05.2015; alle Orte in Spitalgasse 23, 1090 Wien


Information

Ziele, Inhalte und Methode der Lehrveranstaltung

Im Rahmen der LV sind vier Übungsbeispiele unter Matlab auszuarbeiten. Alle vier Übungsbeispiele haben ein gemeinsames Ziel, die Erarbeitung einer Lösung zu einer konkreten vorgegebenen Bildverarbeitungsfragestellung. Bei dieser konkreten Bildverarbeitungsfragestellung handelt es sich um die Erarbeitung eines Bildverarbeitungsfilters unter Matlab zur Segmentierung der Gefäßstrukturen in Fundusbildern. Jedes Übungsbeispiel behandelt dabei die Erarbeitung von Teillösungen für die Gesamtlösung. Der in den Aufgabenstellungen skizziert Lösungsweg zu den Übungsbeispielen führt die Studierenden an Methoden zur Problemlösung heran, mit welchen sie sich bei der Lösungserstellung inhaltlich auseinander zu setzen haben. Im Zuge der Erarbeitung der Gesamtlösung werden unter anderen folgende Themen behandelt:

Einführung in Matlab und in die Image Processing Toolbox von Matlab (IDE, Skriptsprache, Datenstrukturen, Funktionen, etc.);
Repräsentation von digitalen Bildern (Matrizen, Pixel-Koordinatensystem, Koordinatensystem des Ortsraums, Abbildungen zw. diesen Koordinatensystemen, Datentypen für Bildwertebereichsrepräsentation, Problem eines möglichen Wertebereichsüberlaufs, Monochrom- und Farbrepräsentation, Farbräume, Farbwert auf Grauwert-Transformationen);
Einfache Darstellungen von digitalen Bildern (2D-Techniken, Grauwert-/Farbskalamanipulation [LUT], Konzept der Fensterung, 3D-Techniken, Intensitätswerteverteilung als 2D-Graph im 3D);
Charakterisierung von Intensitätswerteverteilungen (Bildstatistiken, min/max Intensitätswert, Intensitätswerthistogramme, Intensitätswertprofile)
Bildverbesserung (Punktoperationen, Schwellwertoperationen, Bildwert-Modifikationen, lineare Skalierung, Anpassung Intensität/Kontrast bei digitalen Bildern);
Filterung im Ortsraum (Filterentwurfsmethoden, Faltung, Faltungskerne/-maske, Mittelwertfilter, Gaußfilter [Tiefpass], Prewitt-Operator, Sobel-Operator, Laplace-Operator, Laplacian of Gaussian, Medianfilter, 2D-Optimalfilter [Matched Filter], Eigenschaft der Isotropie, Zielsetzung Reduktion von Rauschen bzw. Kantendetektion);
Implementierung eines Filters anhand einer konkreten Bildverarbeitungsfragestellung aus dem medizinischen Bereich (theoretischer Lösungsweg ist skizziert, Bildmaterial wird bereitgestellt, Zerlegung des Problems in Teilprobleme entsprechend der Verarbeitungsstufen des Bildverarbeitungsprozesses, Bildrestauration, Bildverbesserung, Segmentierung);

Art der Leistungskontrolle und erlaubte Hilfsmittel

Mindestanforderungen und Beurteilungsmaßstab

Prüfungsstoff

Literatur


Zuordnung im Vorlesungsverzeichnis

Letzte Änderung: Mo 07.09.2020 15:29