Universität Wien

052100 VU Algorithms and Data Structures 2 (2023S)

Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 50 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

  • Montag 06.03. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
    Seminarraum 6, Währinger Straße 29 1.OG
  • Montag 20.03. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
    Seminarraum 6, Währinger Straße 29 1.OG
  • Montag 27.03. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
    Seminarraum 6, Währinger Straße 29 1.OG
  • Montag 17.04. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
    Seminarraum 6, Währinger Straße 29 1.OG
  • Montag 24.04. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
    Seminarraum 6, Währinger Straße 29 1.OG
  • Montag 08.05. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
    Seminarraum 6, Währinger Straße 29 1.OG
  • Montag 15.05. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
    Seminarraum 6, Währinger Straße 29 1.OG
  • Montag 22.05. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
    Seminarraum 6, Währinger Straße 29 1.OG
  • Montag 05.06. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
    Seminarraum 6, Währinger Straße 29 1.OG
  • Montag 12.06. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
    Seminarraum 6, Währinger Straße 29 1.OG
  • Montag 19.06. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
    Seminarraum 6, Währinger Straße 29 1.OG
  • Montag 26.06. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
    Seminarraum 6, Währinger Straße 29 1.OG

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

This course will be taught in English and will take place on-site.

The main objective of this course is to learn some of the key techniques for designing and analyzing algorithms. We will study algorithmic paradigms and show concrete examples on how to use these paradigms to solve different optimization problems. This is a theoretical course, and we’ll largely be focusing on using mathematical tools to prove the correctness and the running time complexity of the algorithms.

At the end of the course, you should be able to recognize which paradigm you would need to use for solving new problems, as well as study the correctness and the time complexity of your suggested solutions. This course doesn’t involve any programming.

Prerequisites:
1) Discrete Mathematics – equivalent to 051110 VO Mathematical Foundations of Computer Science 1 at University of Vienna,
2) Introduction to Algorithms and Data Structures – equivalent to 051024 VU Algorithms and Data Structures 1 at University of Vienna.

Upon request, the instructor can provide additional background reading to help students fill the gaps they may have.

Content:

Algorithmic paradigms/strategies:
– Dynamic Programming
– Greedy Algorithms
Advanced Data Structures and Algorithms:
– Hashing
– Network flows

Art der Leistungskontrolle und erlaubte Hilfsmittel

Active participation is a requirement for passing the course. Each student will be asked to scribe notes for a single lecture. The overall grade will consist of the following components:

10% – scribing a single lecture
30% – two homework sets, each worth 15%
10% – two quizzes, each worth 5%
50% – final written exam

Exams/quizzes will be closed-book, closed notes, and no resources/help from the Internet will be allowed.

Mindestanforderungen und Beurteilungsmaßstab

>= 89 points, grade 1
>= 76 points, grade 2
>= 63 points, grade 3
>= 50 points, grade 4
< 50 points, grade 5

Prüfungsstoff

Everything covered in the lecture, the reading material, the homework problems, and the quizzes

Literatur

– Algorithm Design by Jon Kleinberg and Éva Tardos.

Additional reading resources:

– Introduction to Algorithms By Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein
– Algorithms by Jeff Erickson. http://algorithms.wtf/

Zuordnung im Vorlesungsverzeichnis

Module: CNA

Letzte Änderung: Fr 02.06.2023 10:47