Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
052300 VU Foundations of Data Analysis (2023W)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mi 13.09.2023 09:00 bis Mi 20.09.2023 09:00
- Abmeldung bis Sa 14.10.2023 23:59
Details
max. 50 Teilnehmer*innen
Sprache: Englisch
Lehrende
- Claudia Plant
- Christian Böhm
- Moritz Grosse-Wentrup
- Akshey Kumar
- Christoph Luther
- Anja Meunier
- Martin Teuffenbach
- Erion Çano
Termine (iCal) - nächster Termin ist mit N markiert
- Mittwoch 04.10. 09:45 - 11:15 Hörsaal II NIG Erdgeschoß
- Donnerstag 05.10. 11:30 - 13:00 Hörsaal II NIG Erdgeschoß
- Mittwoch 11.10. 09:45 - 11:15 Hörsaal II NIG Erdgeschoß
- Donnerstag 12.10. 11:30 - 13:00 Hörsaal II NIG Erdgeschoß
- Mittwoch 18.10. 09:45 - 11:15 Hörsaal II NIG Erdgeschoß
- Donnerstag 19.10. 11:30 - 13:00 Hörsaal II NIG Erdgeschoß
- Mittwoch 25.10. 09:45 - 11:15 Hörsaal II NIG Erdgeschoß
- Mittwoch 08.11. 09:45 - 11:15 Hörsaal II NIG Erdgeschoß
- Donnerstag 09.11. 11:30 - 13:00 Hörsaal II NIG Erdgeschoß
- Mittwoch 15.11. 09:45 - 11:15 Hörsaal II NIG Erdgeschoß
- Donnerstag 16.11. 11:30 - 13:00 Hörsaal II NIG Erdgeschoß
- Mittwoch 22.11. 09:45 - 11:15 Hörsaal II NIG Erdgeschoß
-
Donnerstag
23.11.
11:30 - 13:00
Hörsaal 2, Währinger Straße 29 2.OG
Hörsaal II NIG Erdgeschoß - Mittwoch 29.11. 09:45 - 11:15 Hörsaal II NIG Erdgeschoß
- Donnerstag 30.11. 11:30 - 13:00 Hörsaal II NIG Erdgeschoß
- Mittwoch 06.12. 09:45 - 11:15 Hörsaal II NIG Erdgeschoß
- Donnerstag 07.12. 11:30 - 13:00 Hörsaal II NIG Erdgeschoß
- Mittwoch 13.12. 09:45 - 11:15 Hörsaal II NIG Erdgeschoß
- Donnerstag 14.12. 11:30 - 13:00 Hörsaal II NIG Erdgeschoß
- Mittwoch 10.01. 09:45 - 11:15 Hörsaal II NIG Erdgeschoß
- Donnerstag 11.01. 11:30 - 13:00 Hörsaal II NIG Erdgeschoß
- Mittwoch 17.01. 09:45 - 11:15 Hörsaal II NIG Erdgeschoß
- Donnerstag 18.01. 11:30 - 13:00 Hörsaal II NIG Erdgeschoß
- Mittwoch 24.01. 09:45 - 11:15 Hörsaal II NIG Erdgeschoß
- Donnerstag 25.01. 11:30 - 13:00 Hörsaal II NIG Erdgeschoß
-
Mittwoch
31.01.
09:45 - 11:15
Hörsaal 2, Währinger Straße 29 2.OG
Hörsaal II NIG Erdgeschoß
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
- 2 labs (i.e. programming exercises including peer review), for each lab you will get a maximum of 18% of the required points.- 2 pen-and-paper exercise sheets. They serve as a preparation for the exams. For each exercise sheet you will be able to get a maximum of 5% of the required points.- 2 exams, one mid-term and one final, each 25% of the total points.Furthermore you can complete:- 1 exercise sheet to assess your current mathematical (prerequisite) knowledge, 1% of the total points.- 3 anonymized feedbacks, each 1% of the total points.- in addition you can earn at most 10% of bonus points for completing voluntary quizzes
Mindestanforderungen und Beurteilungsmaßstab
For bachelor students, the mandatory prerequisite for this class is the successful completion of the following courses:
- StEOP
- Programmierung 2 (PR2)
- Mathematische Grundlagen der Informatik 2 (MG2)
- Theoretische Informatik (THI)
- Modellierung (MOD)
- Algorithmen und Datenstrukturen (ADS)Grading will be done according to the following scheme:
1 – at least 87.5%
2 – at least 75.0%
3 – at least 60.0%
4 – at least 40.0%To pass the course, you need at least 30% of the total score in all assignments combined with 30% of the total score of the exams.In order to successfully pass the course, regular attendance is strongly recommended, however not mandatory.For the assignments no aids are allowed.
- StEOP
- Programmierung 2 (PR2)
- Mathematische Grundlagen der Informatik 2 (MG2)
- Theoretische Informatik (THI)
- Modellierung (MOD)
- Algorithmen und Datenstrukturen (ADS)Grading will be done according to the following scheme:
1 – at least 87.5%
2 – at least 75.0%
3 – at least 60.0%
4 – at least 40.0%To pass the course, you need at least 30% of the total score in all assignments combined with 30% of the total score of the exams.In order to successfully pass the course, regular attendance is strongly recommended, however not mandatory.For the assignments no aids are allowed.
Prüfungsstoff
1. Models, Statistical Inference, and General Techniques
1.1. Fundamental Concepts in Inference
1.2. Parametric Inference
1.3. Data Splitting, Cross-Validation
2. Regression Modelling
2.1. Simple Linear Regression
2.2. Multiple Regression
2.3. Further Regression Methods
2.4. Generalized Linear Models
2.5. Regression Trees
3. Classification Modelling
3.1. Decision Theoretic Introduction; Error rates, and Bayes Optimality
3.2. Logistic Regression
3.3. Classification Trees
3.4. Support Vector Machines
3.6. Further Classification Methods
4. Neural Networks
5. Basic Techniques of Unsupervised Learning
5.1. Dimension Reduction (Matrix Factorization)
5.2. Association Rules
6. Clustering Methods
6.1. Partitioning Clustering
6.2. Hierarchical Clustering
6.3. Density-based Clustering
6.4. Evaluation and Validation of Clustering Results
1.1. Fundamental Concepts in Inference
1.2. Parametric Inference
1.3. Data Splitting, Cross-Validation
2. Regression Modelling
2.1. Simple Linear Regression
2.2. Multiple Regression
2.3. Further Regression Methods
2.4. Generalized Linear Models
2.5. Regression Trees
3. Classification Modelling
3.1. Decision Theoretic Introduction; Error rates, and Bayes Optimality
3.2. Logistic Regression
3.3. Classification Trees
3.4. Support Vector Machines
3.6. Further Classification Methods
4. Neural Networks
5. Basic Techniques of Unsupervised Learning
5.1. Dimension Reduction (Matrix Factorization)
5.2. Association Rules
6. Clustering Methods
6.1. Partitioning Clustering
6.2. Hierarchical Clustering
6.3. Density-based Clustering
6.4. Evaluation and Validation of Clustering Results
Literatur
Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer 2007.Han, Kamber: Data Mining: Concepts and Techniques, Elsevier 2012.Hastie-Tibshirani-Friedman: The Elements of Statistical Learning, Springer 2009.James-Witten-Hastie-Tibshirani: An Introduction to Statistical Learning with Applications in R, Springer 2015.Shai Shalev-Shwartz, Shai Ben-David: Understanding Machine Learning: From Theory to Algorithms, Cambridge University Press 2014.
Zuordnung im Vorlesungsverzeichnis
Module: FDA AKM SWI STW
Letzte Änderung: Di 03.10.2023 11:47
Concepts as well as techniques are introduced and practiced.Methods: lectures, of pre-recorded video lectures, live lectures and review sessions. New video lectures, tutorials and other learning materials will be made available on Moodle on an ongoing basis. In the review sessions, we will review the most important concepts introduced in the videos and answer any questions you may have.You can attend the introductory lecture on October, 4 over Zoom:
https://univienna.zoom.us/j/61401540894?pwd=Vnd4TVJSSnJQRGxDRHR0b3c2U0ZhUT09
Meeting-ID: 614 0154 0894
Access Code: 995120