Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
052300 VU Foundations of Data Analysis (2024S)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 12.02.2024 09:00 bis Do 22.02.2024 09:00
- Abmeldung bis Do 14.03.2024 23:59
Details
max. 50 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Mittwoch 06.03. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Donnerstag 07.03. 09:45 - 11:15 Hörsaal 31 Hauptgebäude, 1.Stock, Stiege 9
- Mittwoch 13.03. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Donnerstag 14.03. 09:45 - 11:15 Hörsaal 31 Hauptgebäude, 1.Stock, Stiege 9
- Mittwoch 20.03. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Donnerstag 21.03. 09:45 - 11:15 Hörsaal 31 Hauptgebäude, 1.Stock, Stiege 9
- Mittwoch 10.04. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Donnerstag 11.04. 09:45 - 11:15 Hörsaal 31 Hauptgebäude, 1.Stock, Stiege 9
- Mittwoch 17.04. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Donnerstag 18.04. 09:45 - 11:15 Hörsaal 31 Hauptgebäude, 1.Stock, Stiege 9
- Mittwoch 24.04. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Donnerstag 25.04. 09:45 - 11:15 Hörsaal 31 Hauptgebäude, 1.Stock, Stiege 9
- Donnerstag 02.05. 09:45 - 11:15 Hörsaal 31 Hauptgebäude, 1.Stock, Stiege 9
-
Mittwoch
08.05.
09:45 - 11:15
Hörsaal C2 UniCampus Hof 2 2G-K1-03
Hörsaal II NIG Erdgeschoß - Mittwoch 15.05. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Donnerstag 16.05. 09:45 - 11:15 Hörsaal 31 Hauptgebäude, 1.Stock, Stiege 9
- Mittwoch 22.05. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Donnerstag 23.05. 09:45 - 11:15 Hörsaal 31 Hauptgebäude, 1.Stock, Stiege 9
- Mittwoch 29.05. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Mittwoch 05.06. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Donnerstag 06.06. 09:45 - 11:15 Hörsaal 31 Hauptgebäude, 1.Stock, Stiege 9
- Mittwoch 12.06. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Donnerstag 13.06. 09:45 - 11:15 Hörsaal 31 Hauptgebäude, 1.Stock, Stiege 9
- Mittwoch 19.06. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Donnerstag 20.06. 09:45 - 11:15 Hörsaal 31 Hauptgebäude, 1.Stock, Stiege 9
- Mittwoch 26.06. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
-
Donnerstag
27.06.
09:45 - 11:15
Hörsaal 31 Hauptgebäude, 1.Stock, Stiege 9
Hörsaal II NIG Erdgeschoß
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Assignments:
- 2 labs: i.e. programming exercises including peer review. For each lab you will be able to get a maximum of 18% of the total points.
- 2 pen-and-paper assignments: they serve as a preparation for the exams. For each exercise sheet you will be able to get a maximum of 5% of the total points.
- 1 mathematical prerequisites test: exercise sheet to assess your current mathematical knowledge (prerequisite), 1% of the total points.
- 3 anonymized feedback forms, each 1% of the total points.Exams:
- 2 exams: one mid-term and one final exam, each 25% of the total points.Bonus exercises:
- in addition you can earn at most 10% of bonus points for completing voluntary quizzes (maximum 5% for each part of the lecture)The assignments need to be solved individually, sharing your solutions and copying those of other students is forbidden.
For each of these assignments, the authorized aids will be communicated in the description of the corresponding assignment.
Proper marking and citing of all external materials you used is mandatory. We will make use of plagiarism and code checking tools (e.g. Turnitin).
- 2 labs: i.e. programming exercises including peer review. For each lab you will be able to get a maximum of 18% of the total points.
- 2 pen-and-paper assignments: they serve as a preparation for the exams. For each exercise sheet you will be able to get a maximum of 5% of the total points.
- 1 mathematical prerequisites test: exercise sheet to assess your current mathematical knowledge (prerequisite), 1% of the total points.
- 3 anonymized feedback forms, each 1% of the total points.Exams:
- 2 exams: one mid-term and one final exam, each 25% of the total points.Bonus exercises:
- in addition you can earn at most 10% of bonus points for completing voluntary quizzes (maximum 5% for each part of the lecture)The assignments need to be solved individually, sharing your solutions and copying those of other students is forbidden.
For each of these assignments, the authorized aids will be communicated in the description of the corresponding assignment.
Proper marking and citing of all external materials you used is mandatory. We will make use of plagiarism and code checking tools (e.g. Turnitin).
Mindestanforderungen und Beurteilungsmaßstab
For bachelor students, the mandatory prerequisite for this class is the successful completion of the following courses:
- StEOP
- Programmierung 2 (PR2)
- Mathematische Grundlagen der Informatik 2 (MG2)
- Theoretische Informatik (THI)
- Modellierung (MOD)
- Algorithmen und Datenstrukturen (ADS)Grading will be done according to the following scheme:
1 – at least 87.5%
2 – at least 75.0%
3 – at least 60.0%
4 – at least 40.0%+ In order to pass the course, you will need at least 30% of the total points of the assignments AND 30% of the total points of the exams.To successfully pass the course, regular attendance is strongly recommended, however not mandatory.
- StEOP
- Programmierung 2 (PR2)
- Mathematische Grundlagen der Informatik 2 (MG2)
- Theoretische Informatik (THI)
- Modellierung (MOD)
- Algorithmen und Datenstrukturen (ADS)Grading will be done according to the following scheme:
1 – at least 87.5%
2 – at least 75.0%
3 – at least 60.0%
4 – at least 40.0%+ In order to pass the course, you will need at least 30% of the total points of the assignments AND 30% of the total points of the exams.To successfully pass the course, regular attendance is strongly recommended, however not mandatory.
Prüfungsstoff
1. Models, Statistical Inference, and General Techniques
1.1. Fundamental Concepts in Inference
1.2. Parametric Inference
1.3. Hypothesis Testing and p-values
1.4. The Bootstrap
1.5. Data Splitting, Cross-Validation2. Regression Modelling
2.1. Simple Linear Regression
2.2. Multiple Regression
2.3. Further Regression Methods
2.4. Generalized Linear Models
2.5. Regression Trees3. Classification Modelling
3.1. Decision Theoretic Introduction; Error rates, and Bayes Optimality
3.2. Logistic Regression
3.3. Classification Trees
3.4. Support Vector Machines
3.6. Further Classification Methods4. Neural Networks5. Basic Techniques of Unsupervised Learning
5.1. Dimension Reduction (Matrix Factorization)
5.2. Association Rules6. Clustering Methods
6.1. Hierarchical Clustering
6.2. Model-based Clustering
6.3. Evaluation and Validation of Clustering Results
6.4. Density-based Clustering
6.5. Self Organizing Maps
1.1. Fundamental Concepts in Inference
1.2. Parametric Inference
1.3. Hypothesis Testing and p-values
1.4. The Bootstrap
1.5. Data Splitting, Cross-Validation2. Regression Modelling
2.1. Simple Linear Regression
2.2. Multiple Regression
2.3. Further Regression Methods
2.4. Generalized Linear Models
2.5. Regression Trees3. Classification Modelling
3.1. Decision Theoretic Introduction; Error rates, and Bayes Optimality
3.2. Logistic Regression
3.3. Classification Trees
3.4. Support Vector Machines
3.6. Further Classification Methods4. Neural Networks5. Basic Techniques of Unsupervised Learning
5.1. Dimension Reduction (Matrix Factorization)
5.2. Association Rules6. Clustering Methods
6.1. Hierarchical Clustering
6.2. Model-based Clustering
6.3. Evaluation and Validation of Clustering Results
6.4. Density-based Clustering
6.5. Self Organizing Maps
Literatur
> Shalev-Shwartz, Shai, and Shai Ben-David. Understanding machine learning: From theory to algorithms. Cambridge University Press, 2014.
> Bishop, Christopher M. Pattern recognition and machine learning. Springer, 2006.
> Hastie-Tibshirani-Friedman: The Elements of Statistical Learning, Springer 2009.
> Han, Kamber, Pei: Data Mining Concepts and Techniques Third Edition.
> Witten, Frank, Hall, Pai: Data Mining Practical Machine Learning Tools and Techniques Fourth Edition.
> Bishop, Christopher M. Pattern recognition and machine learning. Springer, 2006.
> Hastie-Tibshirani-Friedman: The Elements of Statistical Learning, Springer 2009.
> Han, Kamber, Pei: Data Mining Concepts and Techniques Third Edition.
> Witten, Frank, Hall, Pai: Data Mining Practical Machine Learning Tools and Techniques Fourth Edition.
Zuordnung im Vorlesungsverzeichnis
Module: FDA AKM SWI STW
Letzte Änderung: Di 05.03.2024 17:05
https://univienna.zoom.us/j/68717730293?pwd=KzZzbU9DRkFaRHdZYUlmajJxdjdXdz09
Meeting-ID: 687 1773 0293
Access Code: 995120