Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
052300 VU Foundations of Data Analysis (2024W)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Fr 13.09.2024 09:00 bis Fr 20.09.2024 09:00
- Abmeldung bis Mo 14.10.2024 23:59
Details
max. 50 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Mittwoch 02.10. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Donnerstag 03.10. 11:30 - 13:00 Hörsaal 21 Hauptgebäude, Hochparterre, Stiege 8
- Mittwoch 09.10. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Donnerstag 10.10. 11:30 - 13:00 Hörsaal 21 Hauptgebäude, Hochparterre, Stiege 8
- Mittwoch 16.10. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Donnerstag 17.10. 11:30 - 13:00 Hörsaal 21 Hauptgebäude, Hochparterre, Stiege 8
- Mittwoch 23.10. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Donnerstag 24.10. 11:30 - 13:00 Hörsaal 21 Hauptgebäude, Hochparterre, Stiege 8
- Mittwoch 30.10. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Donnerstag 31.10. 11:30 - 13:00 Hörsaal 21 Hauptgebäude, Hochparterre, Stiege 8
- Mittwoch 06.11. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Donnerstag 07.11. 11:30 - 13:00 Hörsaal 21 Hauptgebäude, Hochparterre, Stiege 8
- Mittwoch 13.11. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Donnerstag 14.11. 11:30 - 13:00 Hörsaal 21 Hauptgebäude, Hochparterre, Stiege 8
- Mittwoch 20.11. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
-
Donnerstag
21.11.
11:30 - 13:00
Hörsaal 21 Hauptgebäude, Hochparterre, Stiege 8
Seminarraum 7, Währinger Straße 29 1.OG - Mittwoch 27.11. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Donnerstag 28.11. 11:30 - 13:00 Hörsaal 21 Hauptgebäude, Hochparterre, Stiege 8
- Mittwoch 04.12. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Donnerstag 05.12. 11:30 - 13:00 Hörsaal 21 Hauptgebäude, Hochparterre, Stiege 8
- Mittwoch 11.12. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Donnerstag 12.12. 11:30 - 13:00 Hörsaal 21 Hauptgebäude, Hochparterre, Stiege 8
- Mittwoch 08.01. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Donnerstag 09.01. 11:30 - 13:00 Hörsaal 21 Hauptgebäude, Hochparterre, Stiege 8
- Mittwoch 15.01. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Donnerstag 16.01. 11:30 - 13:00 Hörsaal 21 Hauptgebäude, Hochparterre, Stiege 8
- N Mittwoch 22.01. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Donnerstag 23.01. 11:30 - 13:00 Hörsaal 21 Hauptgebäude, Hochparterre, Stiege 8
- Mittwoch 29.01. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
-
Donnerstag
30.01.
11:30 - 13:00
Hörsaal 1 Hauptgebäude Tiefparterre Stiege 1 Hof 1
Hörsaal 21 Hauptgebäude, Hochparterre, Stiege 8
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
- 2 labs (i.e. programming exercises including peer review), for each lab you will get a maximum of 18% of the required points.- 2 pen-and-paper exercise sheets. They serve as a preparation for the exams. For each exercise sheet you will be able to get a maximum of 5% of the required points.- 2 exams, one mid-term and one final, each 25% of the total points.Furthermore you can complete:- 1 exercise sheet to assess your current mathematical (prerequisite) knowledge, 1% of the total points.- 3 anonymized feedbacks, each 1% of the total points.- in addition you can earn at most 10% of bonus points for completing voluntary quizzes
Mindestanforderungen und Beurteilungsmaßstab
For bachelor students, the mandatory prerequisite for this class is the successful completion of the following courses:
- StEOP
- Programmierung 2 (PR2)
- Mathematische Grundlagen der Informatik 2 (MG2)
- Theoretische Informatik (THI)
- Modellierung (MOD)
- Algorithmen und Datenstrukturen (ADS)Grading will be done according to the following scheme:
1 – at least 87.5%
2 – at least 75.0%
3 – at least 60.0%
4 – at least 40.0%To pass the course, you need at least 30% of the total score in all assignments combined with 30% of the total score of the exams.In order to successfully pass the course, regular attendance is strongly recommended, however not mandatory.For the assignments no aids are allowed.
- StEOP
- Programmierung 2 (PR2)
- Mathematische Grundlagen der Informatik 2 (MG2)
- Theoretische Informatik (THI)
- Modellierung (MOD)
- Algorithmen und Datenstrukturen (ADS)Grading will be done according to the following scheme:
1 – at least 87.5%
2 – at least 75.0%
3 – at least 60.0%
4 – at least 40.0%To pass the course, you need at least 30% of the total score in all assignments combined with 30% of the total score of the exams.In order to successfully pass the course, regular attendance is strongly recommended, however not mandatory.For the assignments no aids are allowed.
Prüfungsstoff
1. Models, Statistical Inference, and General Techniques
1.1. Fundamental Concepts in Inference
1.2. Parametric Inference
1.3. Data Splitting, Cross-Validation
2. Regression Modelling
2.1. Simple Linear Regression
2.2. Multiple Regression
2.3. Further Regression Methods
2.4. Generalized Linear Models
2.5. Regression Trees
3. Classification Modelling
3.1. Decision Theoretic Introduction; Error rates, and Bayes Optimality
3.2. Logistic Regression
3.3. Classification Trees
3.4. Support Vector Machines
3.6. Further Classification Methods
4. Neural Networks
5. Basic Techniques of Unsupervised Learning
5.1. Dimension Reduction (Matrix Factorization)
5.2. Association Rules
6. Clustering Methods
6.1. Partitioning Clustering
6.2. Hierarchical Clustering
6.3. Density-based Clustering
6.4. Evaluation and Validation of Clustering Results
1.1. Fundamental Concepts in Inference
1.2. Parametric Inference
1.3. Data Splitting, Cross-Validation
2. Regression Modelling
2.1. Simple Linear Regression
2.2. Multiple Regression
2.3. Further Regression Methods
2.4. Generalized Linear Models
2.5. Regression Trees
3. Classification Modelling
3.1. Decision Theoretic Introduction; Error rates, and Bayes Optimality
3.2. Logistic Regression
3.3. Classification Trees
3.4. Support Vector Machines
3.6. Further Classification Methods
4. Neural Networks
5. Basic Techniques of Unsupervised Learning
5.1. Dimension Reduction (Matrix Factorization)
5.2. Association Rules
6. Clustering Methods
6.1. Partitioning Clustering
6.2. Hierarchical Clustering
6.3. Density-based Clustering
6.4. Evaluation and Validation of Clustering Results
Literatur
Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer 2007.Han, Kamber: Data Mining: Concepts and Techniques, Elsevier 2012.Hastie-Tibshirani-Friedman: The Elements of Statistical Learning, Springer 2009.James-Witten-Hastie-Tibshirani: An Introduction to Statistical Learning with Applications in R, Springer 2015.Shai Shalev-Shwartz, Shai Ben-David: Understanding Machine Learning: From Theory to Algorithms, Cambridge University Press 2014.
Zuordnung im Vorlesungsverzeichnis
Module: FDA AKM SWI STW
Letzte Änderung: Di 12.11.2024 09:05
Concepts as well as techniques are introduced and practiced.Methods: lectures, of pre-recorded video lectures, live lectures and review sessions. New video lectures, tutorials and other learning materials will be made available on Moodle on an ongoing basis. In the review sessions, we will review the most important concepts introduced in the videos and answer any questions you may have.You can attend the introductory lecture on October, 2 over Zoom:
https://univienna.zoom.us/j/63287522507?pwd=kPh4TwTPZZgDG8Q2xJt8voQ4YUZDjl.1
Meeting-ID: 632 8752 2507
Access Code: 995120