Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
052315 VU Natural Language Processing (2019S)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 11.02.2019 09:00 bis Mi 20.02.2019 23:59
- Abmeldung bis So 17.03.2019 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Montag 04.03. 11:30 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Montag 11.03. 11:30 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Montag 18.03. 11:30 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Montag 25.03. 11:30 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Montag 01.04. 11:30 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Montag 08.04. 11:30 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Montag 29.04. 11:30 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Montag 06.05. 11:30 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Montag 13.05. 11:30 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Montag 20.05. 11:30 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Montag 27.05. 11:30 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Montag 03.06. 11:30 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Montag 17.06. 11:30 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Montag 24.06. 11:30 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
The students know the basics of natural language processing. They master the use of linguistic resources and tools, and are able to efficiently apply them to independently design and implement solutions for subject-specific problems. Students can convey this knowledge in written form and in oral presentations.This is a practice-oriented course with a significant implementation requirement. It is based on the NLTK book with many implementation examples in Python. Selected problems are also solved using SWI-Prolog.This course covers the following topics: language processing and Python, accessing text corpora and lexical resources, processing raw text, writing structured programs, categorizing and tagging words, learning to classify text, extracting information from text, analyzing sentence structure, building feature based grammars, analyzing the meaning of sentences.The main software tools used in this course are: Python 3 and NLTK with bpython as interpreter and Geany as editor; as well as SWI-Prolog with the PDT Eclipse Prolog IDE.
Art der Leistungskontrolle und erlaubte Hilfsmittel
There are two exams, one after the first half of the semester and one at the end of the semester. For each exam there are 80 minutes to answer 20 questions. Each correct answer counts 1 point. No support material is allowed.All electronic devices must be turned off and put away before starting the exam. They must not be kept on the person or placed in clothes but packed in, e.g. a closed bag and cannot be taken out during the entire exam.The two test results account for 40 % of the total rating.The remaining 60 % are earned through voluntary oral presentations during the semester. There are altogether 10 exercise sheets with problems to solve. For a certain exercise sheet at most one problem can be presented by a student. The two best results for the first 5 exercise sheets account for 30 % of the total rating, the two best results for the second 5 exercise sheets account for the final 30 %.
Mindestanforderungen und Beurteilungsmaßstab
A mandatory prerequisite for this course is the successful completion of Foundations of Data Analysis.The grading scale for the course is: 1: at least 90%, 2: at least 80%, 3: at least 65%, 4: at least 50%.
Prüfungsstoff
There are exercise sheets for the following topics: language processing and Python, accessing text corpora and lexical resources, processing raw text, writing structured programs, categorizing and tagging words, learning to classify text, extracting information from text, analyzing sentence structure, building feature based grammars, analyzing the meaning of sentences. The first exam covers the first five topics, the second exam the remaining topics.
Literatur
Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with Python. http://www.nltk.org/book/, O'Reilly Media, 2009.Daniel Jurafsky and James H. Martin. Speech and Language Processing. 2nd Edition, Pearson, 2009.Ruslan Mitkov, ed. The Oxford Handbook of Computational Linguistics. Oxford University Press, 2005.Nitin Indurkhya and Fred J. Damerau, eds. Handbook of Natural Language Processing. 2nd Edition, Chapman and Hall/CRC, 2010.Kai-Uwe Carstensen et al., eds. Computerlinguistik und Sprachtechnologie - Eine Einführung. 3rd Edition, Springer Spektrum, 2010 (in German).
Zuordnung im Vorlesungsverzeichnis
Module: NLP MSP
Letzte Änderung: Mo 07.09.2020 15:30