Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
052316 VU Deep Learning for Natural Language Processing (2023W)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mi 13.09.2023 09:00 bis Mi 20.09.2023 09:00
- Abmeldung bis Sa 14.10.2023 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Donnerstag 05.10. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 05.10. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 12.10. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 12.10. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 19.10. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 19.10. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 09.11. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 09.11. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 16.11. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 16.11. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 23.11. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 23.11. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 30.11. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 30.11. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 07.12. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 07.12. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 14.12. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 14.12. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 11.01. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 11.01. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 18.01. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 18.01. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 25.01. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 25.01. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
- Regular assignments throughout the semester in Moodle 20%
- Programming exercises 20%
- Midterm exam 30%
- Final exam 30%
- Programming exercises 20%
- Midterm exam 30%
- Final exam 30%
Mindestanforderungen und Beurteilungsmaßstab
The participant must attend at least 75 % of the sessions. The grade is calculated from the total points as follows:>= 90% very good (1)
>= 80% good (2)
>= 65% satisfactory (3)
>= 50% sufficient (4)
< 50% not sufficient (5)
>= 80% good (2)
>= 65% satisfactory (3)
>= 50% sufficient (4)
< 50% not sufficient (5)
Prüfungsstoff
Literatur
Jason Brownlee: "Basics of Linear Algebra for Machine Learning - Discover the Mathematical Language of Data in Python"
https://github.com/balban/Books/tree/master/Linear%20AlgebraYoav Goldberg: "Neural Network Methods for Natural Language Processing", Morgan & Claypool, 2017
https://github.com/Michael2Tang/ML_DocSteven Bird, Ewan Klein, Edward Loper: "Natural Language Processing with Python - Analyzing Text with the Natural Language Toolkit"
https://www.nltk.org/bookIan Goodfellow and Yoshua Bengio and Aaron Courville: "Deep Learning", MIT Press, 2016.
https://www.deeplearningbook.org
https://github.com/balban/Books/tree/master/Linear%20AlgebraYoav Goldberg: "Neural Network Methods for Natural Language Processing", Morgan & Claypool, 2017
https://github.com/Michael2Tang/ML_DocSteven Bird, Ewan Klein, Edward Loper: "Natural Language Processing with Python - Analyzing Text with the Natural Language Toolkit"
https://www.nltk.org/bookIan Goodfellow and Yoshua Bengio and Aaron Courville: "Deep Learning", MIT Press, 2016.
https://www.deeplearningbook.org
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Fr 10.11.2023 10:47
(DH students who want to take this lecture need to have passed the lecture "Practical Machine Learning for Natural Language Processing" with very good success, or have equivalent previous knowledge in programming and machine learning, for successfully participating in this lecture.)