Universität Wien
Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.

052411 VU Business Intelligence I (2022S)

Prüfungsimmanente Lehrveranstaltung
GEMISCHT

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 25 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Kickoff meeting (online): 02.03. 09:45
Link: https://bbb.cs.univie.ac.at/b/mar-9nf-2s4-hhh

  • Mittwoch 02.03. 09:45 - 13:00 Digital
  • Mittwoch 09.03. 09:45 - 13:00 Digital
  • Mittwoch 16.03. 09:45 - 13:00 Digital
  • Mittwoch 23.03. 09:45 - 13:00 Digital
  • Mittwoch 30.03. 09:45 - 13:00 Digital
  • Mittwoch 06.04. 09:45 - 13:00 Digital
  • Mittwoch 27.04. 08:00 - 11:15 Digital
  • Mittwoch 04.05. 08:00 - 11:15 Digital
  • Mittwoch 11.05. 08:00 - 11:15 Digital
  • Mittwoch 18.05. 08:00 - 11:15 Digital
  • Mittwoch 25.05. 08:00 - 11:15 Digital
  • Mittwoch 01.06. 08:00 - 11:15 Digital
  • Mittwoch 08.06. 09:45 - 13:00 Digital
  • Mittwoch 15.06. 09:45 - 13:00 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Mittwoch 22.06. 09:45 - 13:00 Digital
  • Mittwoch 29.06. 11:30 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
    Seminarraum 10, Währinger Straße 29 2.OG
    Seminarraum 9, Währinger Straße 29 2.OG

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

Goals:
* Introduction, familiarization and application of methods and tools for business intelligence
* Getting to know and apply analysis methods of process and cross-sectional data

The content of the lecture consists of:
* Methodology and modeling techniques in business intelligence
* Data models in business intelligence and data quality
* Analysis of process data and process discovery (process mining)
* Social network analysis
* Text mining and Opinion Mining
* Business intelligence tools to apply business intelligence techniques

Students, attending the course, are expected to have knowledge in the following topics:
* Knowledge of Python3.6+ (especially text processing and data analytics libraries)

Art der Leistungskontrolle und erlaubte Hilfsmittel

The grade is derived from the sum of the two parts (i.e. a maximum of 100 points in total):
* Part A: theoretical and practical exercises submitted individually (max. 55 points)
* Part B: written exam (no aids allowed, max. 45 points).

Mindestanforderungen und Beurteilungsmaßstab

‣ Part A: 55% theoretical and practical exercises
‣ Part B: 45% written exam

Overall at least 50%of the points need to be achieved.

The grade is calculated from the total points as follows:
>= 87,5% very good (1)
>= 75% good (2)
>= 62,5% satisfactory (3)
>= 50% sufficient (4)
< 50% not sufficient (5)

Prüfungsstoff

* Lecture (slides)
* Exercises (theoretical and practical)

Literatur

* Lecture slides
* W. Grossmann, S. Rinderle-Ma: Fundamentals of Business Intelligence. Springer-Verlag Berlin Heidelberg, doi: 10.1007/978-3-662-46531-8 (2015)
* Friedman, J., Hastie, T., Tibshirani, R. (2001). The elements of statistical learning (Vol. 1, No. 10). New York: Springer series in statistics

Zuordnung im Vorlesungsverzeichnis

Module: BI BI1 BUS

Letzte Änderung: Do 11.05.2023 11:27