Universität Wien
Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.

052412 VU Business Intelligence II (2024W)

Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 25 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

  • Donnerstag 03.10. 09:45 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
  • Donnerstag 10.10. 09:45 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
  • Donnerstag 17.10. 09:45 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
  • Donnerstag 24.10. 09:45 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
  • Donnerstag 31.10. 09:45 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
  • Donnerstag 07.11. 09:45 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
  • Donnerstag 14.11. 09:45 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
  • Donnerstag 21.11. 09:45 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
  • Donnerstag 28.11. 09:45 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
  • Donnerstag 28.11. 11:30 - 13:00 Seminarraum 2, Währinger Straße 29 1.UG
  • Donnerstag 05.12. 09:45 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
  • Donnerstag 12.12. 09:45 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
  • Donnerstag 09.01. 09:45 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
  • Donnerstag 16.01. 09:45 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
  • Donnerstag 30.01. 09:45 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

Business Intelligence II will focus on the topic of process mining. Process mining is an emerging branch of data science that aims at deriving qualitative and quantitative insights on the execution of organizational processes, based on the analysis of recorded event sequences. As part of the business intelligence, process mining particularly provides an operational view on organizations, rather than just a focus on achieved outcomes.
The course features lectures and exercises that focus on the formal foundations, algorithms, and techniques of process mining. The course will be divided in two main parts.

Part A will focus on fundamental tasks in process mining, namely:
·      Process discovery, which aims to derive a process model from recorded events
·      Conformance checking, which aims to identify deviations between event data and process models
For the above subjects, the course will cover fundamental algorithms as well as advanced, state-of-the-art techniques.

Part B will focus on advanced topics, such as:
- Event log extraction, quality and preprocessing
- Predictive process monitoring
- Object-centric process mining

The course will combine lectures with practical exercises, include a guest lecture and practical session with a leading process mining company. Examinations that target your understanding and ability to apply the covered concepts will be complemented with a replication study, in which you dive deep into state-of-the-art research.

***Prerequisites***
- You are not required to have taken Business Intelligence I (there will be some redundancy)
- Familiarity with process modeling (BPMN or Petri nets) is helpful but not expected
- Basic programming skills are required for the practical exercises (Python) and group project

Art der Leistungskontrolle und erlaubte Hilfsmittel

The performance assessment in the Business Intelligence II course is formed by the sum of three components:
1) Group project: max. 35% (including Presentation)
2) Exam on Part A (fundamental topics): max 35%
4) Exam on Part B (advanced topics): max. 30%

Mindestanforderungen und Beurteilungsmaßstab

Overall at least 50% of the points need to be achieved.

The grade is calculated from the total points of the components as follows:
>= 87,5% very good (1)
>= 75% good (2)
>= 62,5% satisfactory (3)
>= 50% sufficient (4)
< 50% not sufficient (5)

Prüfungsstoff

* Lecture (slides)
* Exercises (theoretical and practical)
* Selected book chapters/sections

Literatur

·      Wil van der Aalst: Process Mining: Data Science in Action, 2nd edition (Recommended)
·      Josep Carmona et al. Conformance checking, 1st edition (Recommended)
Relevant chapters and sections will be indicated per lecture.

Zuordnung im Vorlesungsverzeichnis

Module: BUS BI2 DSA BI

Letzte Änderung: Mo 18.11.2024 14:05