Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
060067 UE Flugzeuggetragenes Laserscanning (LiDAR) in der Archäologie (2021W)
Prüfungsimmanente Lehrveranstaltung
Labels
GEMISCHT
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mi 01.09.2021 12:00 bis Do 30.09.2021 23:59
- Abmeldung bis Do 07.10.2021 23:59
Details
max. 20 Teilnehmer*innen
Sprache: Deutsch
Lehrende
Termine
Do, 9-12 Uhr, alle zwei Wochen, GIS-Labor
Termine: 14.10; 28.10; 11.11.; 25.11.; 09.12.; 13.01.; 27.01.;Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Persönliche Anwesenheit erforderlich; aktive Teilnahme (Beteiligung an den Diskussionen); persönliche Bearbeitung einer zugewiesenen Aufgabe mit schriftlichem Bericht.
Mindestanforderungen und Beurteilungsmaßstab
Unbedingte Voraussetzung für die Teilnahme an der LV: GIS-Kenntnisse (ArcGIS oder QGIS)!Beurteilungsmaßstab:
- Test in der Einheit am 25. November (Theorie): 40%
- Selbständiges Bewältigen von Aufgaben als Hausübungen innerhalb vorgegebenem Zeitrahmen: 20%
- Interpretation von ALS-basierten Daten und Erstellen eines Berichtes innerhalb vorgegebenem Zeitrahmen (bis 28. Februar): 40%
- Test in der Einheit am 25. November (Theorie): 40%
- Selbständiges Bewältigen von Aufgaben als Hausübungen innerhalb vorgegebenem Zeitrahmen: 20%
- Interpretation von ALS-basierten Daten und Erstellen eines Berichtes innerhalb vorgegebenem Zeitrahmen (bis 28. Februar): 40%
Prüfungsstoff
Test am 25. November: Fragen zum theoretischen Teil. Vorbereitende Literatur wird zur Verfügung gestellt.
Endbericht: Die TeilnehmerInnen müssen eine Aufgabenstellung selbständig lösen und einen Bericht verfassen. Abgabe spätestens am 28. Februar 2022.
Endbericht: Die TeilnehmerInnen müssen eine Aufgabenstellung selbständig lösen und einen Bericht verfassen. Abgabe spätestens am 28. Februar 2022.
Literatur
Briese, Christian; Pfennigbauer, M.; Ullrich, A.; Doneus, Michael (2014): Radiometric Information from Airborne Laser Scanning for Archaeological Prospection. In: International Journal of Heritage in the Digital Era 3 (1), S. 159178.
Crutchley, Simon (2010): The Light Fantastic. Using airborne lidar in archaeological survey. Swindon: English Heritage Publishing.
Doneus, Michael (2013): Openness as Visualization Technique for Interpretative Mapping of Airborne Lidar Derived Digital Terrain Models. In: Remote Sensing of Environment (5), S. 64276442.
Doneus, Michael; Briese, Christian (2006): Digital terrain modelling for archaeological interpretation within forested areas using full-waveform laserscanning. In: M. Ioannides, D. Arnold, F. Niccolucci und K. Mania (Hg.): The 7th International Symposium on Virtual Reality, Archaeology and Cultural Heritage VAST (2006), S. 155162.
Doneus, Michael; Briese, Christian; Fera, Martin; Janner, Martin (2008): Archaeological prospection of forested areas using full-waveform airborne laser scanning. In: Journal of Archaeological Science 35, S. 882893.
Doneus, Michael; Briese, Christian; Kühtreiber, Thomas (2008): Flugzeuggetragenes Laserscanning als Werkzeug der archäologischen Kulturlandschaftsforschung. Das Fallbeispiel "Wüste" bei Mannersdorf am Leithagebirge, Niederösterreich. In: Archäologisches Korrespondenzblatt 38 (1), S. 137156.
Doneus, Michael; Briese, Christian (2011): Airborne Laser Scanning in Forested Areas - Potential and Limitations of an Archaeological Prospection Technique. In: David Cowley (Hg.): Remote Sensing for Archaeological Heritage Management. Proceedings of the 11th EAC Heritage Management Symposium, Reykjavik, Iceland, 25-27 March 2010. Budapest: Archaeolingua; EAC (Occasional Publication of the Aerial Archaeology Research Group, 3), S. 5376.
Doneus, Michael; Doneus, Nives; Briese, Christian; Pregesbauer, Michael; Mandlburger, Gottfried; Verhoeven, Geert (2013): Airborne Laser Bathymetry detecting and recording submerged archaeological sites from the air. In: Journal of Archaeological Science 40, S. 21362151. DOI: 10.1016/j.jas.2012.12.021.
Doneus, Michael; Kühtreiber, Thomas (2013): Airborne laser scanning and archaeological interpretation bringing back the people. In: Rachel S. Opitz und David Cowley (Hg.): Interpreting archaeological topography. Airborne laser scanning, 3D data and ground observation. Oxford: Oxbow Books (Occasional Publication of the Aerial Archaeology Research Group, 5), S. 3250.
Hesse, Ralf (2010): LiDAR-derived Local Relief Models - a new tool for archaeological prospection. In: Archaeological Prospection 17 (2), S. 6772. DOI: 10.1002/arp.374.
Kokalj, Žiga; Somrak, Maja (2019): Why Not a Single Image? Combining Visualizations to Facilitate Fieldwork and On-Screen Mapping. In: Remote Sensing 11 (7), S. 747. DOI: 10.3390/rs11070747.
Kokalj, Žiga; Zakšek, Klemen; Oštir, Krištof (2013): Visualizations of lidar derived relief models. In: Rachel S. Opitz und David Cowley (Hg.): Interpreting archaeological topography. Airborne laser scanning, 3D data and ground observation. Oxford: Oxbow Books (Occasional Publication of the Aerial Archaeology Research Group, 5), S. 100114.
Zakšek, Klemen; Oštir, Krištof; Kokalj, Žiga (2011): Sky-View Factor as a Relief Visualization Technique. In: Remote Sensing of Environment 3 (2), S. 398415.
Crutchley, Simon (2010): The Light Fantastic. Using airborne lidar in archaeological survey. Swindon: English Heritage Publishing.
Doneus, Michael (2013): Openness as Visualization Technique for Interpretative Mapping of Airborne Lidar Derived Digital Terrain Models. In: Remote Sensing of Environment (5), S. 64276442.
Doneus, Michael; Briese, Christian (2006): Digital terrain modelling for archaeological interpretation within forested areas using full-waveform laserscanning. In: M. Ioannides, D. Arnold, F. Niccolucci und K. Mania (Hg.): The 7th International Symposium on Virtual Reality, Archaeology and Cultural Heritage VAST (2006), S. 155162.
Doneus, Michael; Briese, Christian; Fera, Martin; Janner, Martin (2008): Archaeological prospection of forested areas using full-waveform airborne laser scanning. In: Journal of Archaeological Science 35, S. 882893.
Doneus, Michael; Briese, Christian; Kühtreiber, Thomas (2008): Flugzeuggetragenes Laserscanning als Werkzeug der archäologischen Kulturlandschaftsforschung. Das Fallbeispiel "Wüste" bei Mannersdorf am Leithagebirge, Niederösterreich. In: Archäologisches Korrespondenzblatt 38 (1), S. 137156.
Doneus, Michael; Briese, Christian (2011): Airborne Laser Scanning in Forested Areas - Potential and Limitations of an Archaeological Prospection Technique. In: David Cowley (Hg.): Remote Sensing for Archaeological Heritage Management. Proceedings of the 11th EAC Heritage Management Symposium, Reykjavik, Iceland, 25-27 March 2010. Budapest: Archaeolingua; EAC (Occasional Publication of the Aerial Archaeology Research Group, 3), S. 5376.
Doneus, Michael; Doneus, Nives; Briese, Christian; Pregesbauer, Michael; Mandlburger, Gottfried; Verhoeven, Geert (2013): Airborne Laser Bathymetry detecting and recording submerged archaeological sites from the air. In: Journal of Archaeological Science 40, S. 21362151. DOI: 10.1016/j.jas.2012.12.021.
Doneus, Michael; Kühtreiber, Thomas (2013): Airborne laser scanning and archaeological interpretation bringing back the people. In: Rachel S. Opitz und David Cowley (Hg.): Interpreting archaeological topography. Airborne laser scanning, 3D data and ground observation. Oxford: Oxbow Books (Occasional Publication of the Aerial Archaeology Research Group, 5), S. 3250.
Hesse, Ralf (2010): LiDAR-derived Local Relief Models - a new tool for archaeological prospection. In: Archaeological Prospection 17 (2), S. 6772. DOI: 10.1002/arp.374.
Kokalj, Žiga; Somrak, Maja (2019): Why Not a Single Image? Combining Visualizations to Facilitate Fieldwork and On-Screen Mapping. In: Remote Sensing 11 (7), S. 747. DOI: 10.3390/rs11070747.
Kokalj, Žiga; Zakšek, Klemen; Oštir, Krištof (2013): Visualizations of lidar derived relief models. In: Rachel S. Opitz und David Cowley (Hg.): Interpreting archaeological topography. Airborne laser scanning, 3D data and ground observation. Oxford: Oxbow Books (Occasional Publication of the Aerial Archaeology Research Group, 5), S. 100114.
Zakšek, Klemen; Oštir, Krištof; Kokalj, Žiga (2011): Sky-View Factor as a Relief Visualization Technique. In: Remote Sensing of Environment 3 (2), S. 398415.
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Do 21.03.2024 00:10
Das flugzeuggetragene Laserscanning (ALS / LiDAR) ist eine wesentliche Methode der archäologischen Prospektion. Siedlungs- umwelt- und landschaftsarchäologische Arbeiten kommen ohne die hochaufgelösten digitalen Geländemodelle aus ALS-Daten kaum mehr aus.
Die Lehrveranstaltung vermittelt die theoretischen und praktischen Grundlagen dieser Methode anhand archäologischer Beispiele. Im praktischen Teil der LV werden Geländemodelle berechnet, visualisiert und archäologisch interpretiert.