Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
136013 UE Visualization of humanities data (2022S)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 07.02.2022 08:00 bis Do 24.02.2022 23:59
- Abmeldung bis Do 31.03.2022 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine
The course will be held parallel to the VU Visual and Exploratory Data Analysis (2022S). For course times and venue see:
https://ufind.univie.ac.at/de/course.html?lv=053622&semester=2022S
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
handing in of homework, 5x assignments
participation
test
participation
test
Mindestanforderungen und Beurteilungsmaßstab
There is no formal prerequisite.The grading scale for the course will be:
1: at least 87.5%
2: at least 75.0%
3: at least 62.5%
4: at least 50.0%In order to pass the course successfully, you will need to reach a minimum of 50% on all assignments combined, 25% of the points on the last assignment, as well as a minimum of 40% on the test.
1: at least 87.5%
2: at least 75.0%
3: at least 62.5%
4: at least 50.0%In order to pass the course successfully, you will need to reach a minimum of 50% on all assignments combined, 25% of the points on the last assignment, as well as a minimum of 40% on the test.
Prüfungsstoff
applied exercises and tasks
readings
readings
Literatur
T. Munzner: Visualization Analysis & Design: Abstractions, Principles, and Methods, CRC Press, 2014various papers as presented on the course page
Zuordnung im Vorlesungsverzeichnis
DH-S II
S-DH Cluster III
S-DH Cluster III
Letzte Änderung: Do 04.07.2024 00:13
* Visual design principles and the visualization pipeline
* Design studies
* Data acquisition and representation
* Basic visual mapping concepts (marks + channels)
* Human visual perception + Color
* Visual mappings for tables and multi/high-dimensional data
* Visual mappings for networks, graphs and trees
* Visual mappings and algorithms for 2D+3D scalar, vector, and tensor fields
* Visual mappings for text data
* Principles of multiple coordinated views
* Data interaction principles including Brushing+Linking, Navigation+Zoom , Focus+context
* Principles of Evaluation of visual analysis systems
* some selected advanced topicCourse-specific goals -- students can:
* represent and interact with various data visually
* evaluate visual depictions of data and possible find improved presentations
* assist users in visual data analysis
* use different visual analysis tools, like TableauGeneral goals -- students gain:
* insight into a new discipline and extend their scientific horizons
* an appreciation for the interplay of mathematical analysis and user-centered design