Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
136031 UE GenAI for Humanists (2024W)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Fr 06.09.2024 08:00 bis Do 26.09.2024 23:59
- Abmeldung bis Do 31.10.2024 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Montag 07.10. 16:45 - 18:15 Hörsaal 2 Hauptgebäude, Tiefparterre Stiege 5 Hof 3
- Montag 14.10. 16:45 - 18:15 Hörsaal 2 Hauptgebäude, Tiefparterre Stiege 5 Hof 3
- Montag 21.10. 16:45 - 18:15 Hörsaal 2 Hauptgebäude, Tiefparterre Stiege 5 Hof 3
- Montag 28.10. 16:45 - 18:15 Hörsaal 2 Hauptgebäude, Tiefparterre Stiege 5 Hof 3
- Montag 04.11. 16:45 - 18:15 Hörsaal 2 Hauptgebäude, Tiefparterre Stiege 5 Hof 3
- Montag 11.11. 16:45 - 18:15 Hörsaal 2 Hauptgebäude, Tiefparterre Stiege 5 Hof 3
- Montag 18.11. 16:45 - 18:15 Hörsaal 2 Hauptgebäude, Tiefparterre Stiege 5 Hof 3
- Montag 25.11. 16:45 - 18:15 Hörsaal 2 Hauptgebäude, Tiefparterre Stiege 5 Hof 3
- Montag 02.12. 16:45 - 18:15 Hörsaal 2 Hauptgebäude, Tiefparterre Stiege 5 Hof 3
- Montag 09.12. 16:45 - 18:15 Hörsaal 2 Hauptgebäude, Tiefparterre Stiege 5 Hof 3
- Montag 16.12. 16:45 - 18:15 Hörsaal 2 Hauptgebäude, Tiefparterre Stiege 5 Hof 3
- Montag 13.01. 16:45 - 18:15 Hörsaal 2 Hauptgebäude, Tiefparterre Stiege 5 Hof 3
- N Montag 20.01. 16:45 - 18:15 Hörsaal 2 Hauptgebäude, Tiefparterre Stiege 5 Hof 3
- Montag 27.01. 16:45 - 18:15 Hörsaal 2 Hauptgebäude, Tiefparterre Stiege 5 Hof 3
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Evaluation will be mainly through individual and group hands-on assignments and a final capstone project. Participation in the class discussion and activities and an equivalent amount of extra-class dedication to the materials shall be enough to succeed in the course.
Mindestanforderungen und Beurteilungsmaßstab
Attendance is required; regular participation is the key to completing the course; all students must provide their computing environment; homework assignments must be submitted on time (some can be completed later as a part of the final project, but this must be discussed with the instructor whenever the issue arises); the final project must be submitted on time.
Previous knowledge on the Python Programming Language, however not strictly required, is highly recommended.
Previous knowledge on the Python Programming Language, however not strictly required, is highly recommended.
Prüfungsstoff
There is no examination for the course.
Literatur
The reading and video lists will be published on Moodle
Zuordnung im Vorlesungsverzeichnis
DH-S II
S-DH Cluster I, III, IV
S-DH Cluster I, III, IV
Letzte Änderung: Fr 16.08.2024 11:05
> Understanding Generative AI Concepts:
-- Provide a basic understanding of the Neural Networks Architecture underlying Sequence2Sequence and Generative Models
-- Provide a comprehensive understanding of generative AI concepts and tools, including generative models for text, images and speech data.
> Practical Skills Development:
-- Learn basics of Prompt Engineering
-- Use popular Python LLM frameworks like LangChain and LLamaIndex
-- Use Generative AI models using Open Source Models from Hugging Face and proprietary APIs like OpenAI ChatGPT.> Applications and Use Cases:
-- Explore real-world applications and use cases of generative AI across different industries, such as image synthesis, text generation, and sound processing.
> Ethical Considerations:
-- Discuss ethical considerations related to generative AI, including issues like bias, fairness, and responsible AI deployment.Content will cover, but will not be limited to: Social, Technical and Practical aspects of GenAI; LLMs and other Generative Models; LLMs and GenAI for Humanities; Prompt Engineering Techniques; Python Frameworks; Few-shots learning; Fine Tuning models; Using APIs; working with Images; working with speech data; working with tabular data, Large Action Models - Agents.