Universität Wien
Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.

180071 KU Introductory Readings in the Philosophy of Mathematics (2023W)

5.00 ECTS (2.00 SWS), SPL 18 - Philosophie
Prüfungsimmanente Lehrveranstaltung

Hinweis der SPL Philosophie:

Das Abgeben von ganz oder teilweise von einem KI-tool (z.B. ChatGPT) verfassten Texten als Leistungsnachweis (z.B. Seminararbeit) ist nur dann erlaubt, wenn dies von der Lehrveranstaltungsleitung ausdrücklich als mögliche Arbeitsweise genehmigt wurde. Auch hierbei müssen direkt oder indirekt zitierte Textstellen wie immer klar mit Quellenangabe ausgewiesen werden.

Die Lehrveranstaltungsleitung kann zur Überprüfung der Autorenschaft einer abgegebenen schriftlichen Arbeit ein notenrelevantes Gespräch (Plausibilitätsprüfung) vorsehen, das erfolgreich zu absolvieren ist.

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

  • Montag 09.10. 13:15 - 14:45 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
  • Montag 16.10. 13:15 - 14:45 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
  • Montag 23.10. 13:15 - 14:45 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
  • Montag 30.10. 13:15 - 14:45 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
  • Montag 06.11. 13:15 - 14:45 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
  • Montag 13.11. 13:15 - 14:45 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
  • Montag 20.11. 13:15 - 14:45 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
  • Montag 27.11. 13:15 - 14:45 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
  • Montag 04.12. 13:15 - 14:45 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
  • Montag 11.12. 13:15 - 14:45 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
  • Montag 08.01. 13:15 - 14:45 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
  • Montag 15.01. 13:15 - 14:45 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
  • Montag 22.01. 13:15 - 14:45 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
  • Montag 29.01. 13:15 - 14:45 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

Mathematics is philosophically puzzling.
Mathematics seems to tell us about the world. Mathematics is useful in science and day-to-day life, perhaps unreasonably so.
That's not too surprising, lots of sciences are useful in practice. But, in contrast to other sciences, mathematics is purely theoretical.
It's unsurprising that, say, physics or chemistry is useful because physicists and chemists perform experiments on the actual world.
Mathematicians do nothing of the sort. Mathematical beliefs are justified by proofs not experiments.

How can something purely theoretical, not experimental, do such a good job at describing the world?
Does this show there are mathematical objects? Or that the world has mathematical structure? If so, how do we know about it?
How do our theories of knowledge or science need to change to accommodate this?
If there are no mathematical objects, how do we explain the efficacy of mathematics?

In this course, we will discuss all of these questions and more.
The purpose of the course is to provide a gentle introduction to a very interesting and important, though quite specialist, area of philosophy.
Vienna is a very active place for the Philosophy of Mathematics. By the end of this course, you will not only have a better understanding of the Philosophy of Mathematics but be able to engage with the wide range of events, talks and conferences on the philosophy of maths that take place here.

Prior knowledge of mathematics is NOT required (though is obviously helpful).
A good mark from your logic course will also be helpful, but is also not required.

If you have questions, you're welcome to email me at gareth.pearce@univie.ac.at

Note: I am happy to supervise BA theses as part of this course. See the "examination topics" section for details.

Art der Leistungskontrolle und erlaubte Hilfsmittel

The assessment has two parts: class tasks & the final essay.

During the semester we will have a number of in-class tasks (~2 or 3). These are assessed on a simple pass/fail basis.
If you complete all of these tasks and submit a reasonable attempt at the final essay you will get at least a 3.
Higher grades (2 and 1) are awarded on the basis of the final essay.
The exact essay length is to be determined but is currently planned for ~2500 words.

The essay can be on any topic covered in the course.
Subject to agreement, you are welcome to write on other topics in the philosophy of mathematics not discussed in the course.
In particular, you are encouraged to attend talks, conferences and events on the philosophy of maths held in Vienna and are welcome to find inspiration there!

Mindestanforderungen und Beurteilungsmaßstab

(1) Completion of all in-class tasks, or suitable replacement tasks in the event of illness or reasonable absence.
(2) Completion of the final essay.

Prüfungsstoff

Content: All content covered in the course.
Skills: academic writing, reading & comprehension, argument analysis, and use of formal methods in philosophy.

Thesis supervision: I am happy to supervise BA theses as part of this course, subject to agreement of a suitable topic.
A suitable topic might be any of the topics covered during the course or some other topic in the history or philosophy of mathematics. I would also be happy to supervise topics in the philosophy of logic.
As with this course, the language of the thesis must be English.

Literatur

The course follows Øystein Linnebo’s book "Philosophy of Mathematics", which can be found on U:Search.
A secondary reading list will also be provided. You are not expected to read all of this but you are encouraged to read at least one other paper relevant to your final essay.

Zuordnung im Vorlesungsverzeichnis

Letzte Änderung: So 08.10.2023 17:47