Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
180096 KU Big Data in Science (2022S)
Prüfungsimmanente Lehrveranstaltung
Labels
DIGITAL
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Fr 11.02.2022 09:00 bis Fr 18.02.2022 10:00
- Anmeldung von Di 22.02.2022 09:00 bis Mo 28.02.2022 10:00
- Abmeldung bis So 20.03.2022 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
All course units will be held via Zoom.
- Donnerstag 10.03. 18:30 - 20:00 Digital
- Donnerstag 17.03. 18:30 - 20:00 Digital
- Donnerstag 24.03. 18:30 - 20:00 Digital
- Donnerstag 31.03. 18:30 - 20:00 Digital
- Donnerstag 07.04. 18:30 - 20:00 Digital
- Donnerstag 28.04. 18:30 - 20:00 Digital
- Donnerstag 05.05. 18:30 - 20:00 Digital
- Donnerstag 12.05. 18:30 - 20:00 Digital
- Donnerstag 19.05. 18:30 - 20:00 Digital
- Donnerstag 02.06. 18:30 - 20:00 Digital
- Donnerstag 09.06. 18:30 - 20:00 Digital
- Donnerstag 23.06. 18:30 - 20:00 Digital
- Donnerstag 30.06. 18:30 - 20:00 Digital
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Big Data has become ubiquitous in science, society, and politics, and has already changed the organization of science. Before the appearance of Big Data, the data has been produced in a more target directed way, e.g. in experimental settings. Such regimented data production appears to have changed with data producing technologies, such as the omic-technologies in the life sciences, which has led to the appearance of novel research areas, such as genomics, epigenomics, and proteomics. The huge amounts of data produced in those fields, become stored in databases, and shared among the community of researchers. Such data can ‘travel’ into different research contexts, becoming employed to study of diverse research questions. In recent years some philosophers of science have asked whether science is experiencing profound changes as a result of becoming data centric.This course addresses the notion of Big Data, the importance on algorithms and visualization for data-centric practices, and the impact of Big Data on scientific knowledge.
Art der Leistungskontrolle und erlaubte Hilfsmittel
- careful reading and active discussion of the literature
- questions in the Moodle platform
- active discussion in the Moodle platform
- (co-)chairing group discussion in the class
- a group project
- questions in the Moodle platform
- active discussion in the Moodle platform
- (co-)chairing group discussion in the class
- a group project
Mindestanforderungen und Beurteilungsmaßstab
Minimum requirements and assessment criteria:- active participation (30%),
- questions and online discussion of readings (30%),
- (co-)chairing a class (10%),
- a group project (30%).All aforementioned components of the course have to be fulfilled for the successful completion of the grade.One unexcused absence is permitted.Grading table
1 – (excellent) 90 – 100 points
2 – (good) 81 – 89 points
3 – (satisfactory) 71 – 80 points
4 – (sufficient) 61 – 70 points
5 – (insufficient) 0 – 60 points
- questions and online discussion of readings (30%),
- (co-)chairing a class (10%),
- a group project (30%).All aforementioned components of the course have to be fulfilled for the successful completion of the grade.One unexcused absence is permitted.Grading table
1 – (excellent) 90 – 100 points
2 – (good) 81 – 89 points
3 – (satisfactory) 71 – 80 points
4 – (sufficient) 61 – 70 points
5 – (insufficient) 0 – 60 points
Prüfungsstoff
The course does not have a final essay or an examination (see minimum requirements)
Literatur
Bechtel, William. 2020. “Data Journeys beyond Databases in Systems Biology: Cytoscape and NDEx.” In Data Journeys in the Sciences, 121–43. Springer, Cham.Kitchin, Rob. 2021. The Data Revolution: A Critical Analysis of Big Data, Open Data and Data Infrastructures. Second Edition. Thousand Oaks: SAGE Publications Ltd. (selected parts)Klingenstein, Sara, Tim Hitchcock, and Simon DeDeo. 2014. “The Civilizing Process in London’s Old Bailey.” Proceedings of the National Academy of Sciences 111 (26): 9419–24. https://doi.org/10.1073/pnas.1405984111.Leonelli, Sabina. 2016. Data-Centric Biology: A Philosophical Study. University of Chicago Press. (selected parts)———. 2021. “Data Science in Times of Pan(Dem)Ic.” Harvard Data Science Review, January. https://doi.org/10.1162/99608f92.fbb1bdd6.Lin, Chujun, and Mark Allen Thornton. 2021. “Fooled by Beautiful Data: Visualization Aesthetics Bias Trust in Science, News, and Social Media.” PsyArXiv. https://doi.org/10.31234/osf.io/dnr9s.Shen-Orr, Shai S., Ron Milo, Shmoolik Mangan, and Uri Alon. 2002. “Network Motifs in the Transcriptional Regulation Network of Escherichia Coli.” Nature Genetics 31 (1): 64–68. https://doi.org/10.1038/ng881.Stark, David C., and Noortje Marres. 2020. “Put to the Test: For a New Sociology of Testing” 71 (3): 423–43. https://doi.org/10.7916/d8-kkcr-7s54.Waller, Isaac, and Ashton Anderson. 2021. “Quantifying Social Organization and Political Polarization in Online Platforms.” Nature 600 (7888): 264–68. https://doi.org/10.1038/s41586-021-04167-x.Wills, Melissa. 2017. “Are Clusters Races? A Discussion of the Rhetorical Appropriation of Rosenberg Et Al.’S ‘Genetic Structure of Human Populations.’” Philosophy, Theory, and Practice in Biology 9 (12). http://dx.doi.org/10.3998/ptb.6959004.0009.012.
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Do 11.05.2023 11:27