Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
180148 VO+UE Tools in Cognitive Science I: Computation, Computer-aided Methodologies and Problem Solving (2020W)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Di 15.09.2020 09:00 bis Mo 05.10.2020 12:00
- Abmeldung bis Sa 31.10.2020 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Freitag 02.10. 16:45 - 20:00 Digital
- Freitag 09.10. 16:45 - 20:00 Digital
- Freitag 16.10. 16:45 - 20:00 Digital
- Freitag 23.10. 16:45 - 20:00 Digital
- Freitag 06.11. 16:45 - 20:00 Digital
- Freitag 13.11. 16:45 - 20:00 Digital
- Freitag 20.11. 16:45 - 20:00 Digital
- Freitag 27.11. 16:45 - 20:00 Digital
- Freitag 04.12. 16:45 - 20:00 Digital
- Freitag 11.12. 16:45 - 20:00 Digital
- Freitag 18.12. 16:45 - 20:00 Digital
- Freitag 08.01. 16:45 - 20:00 Digital
- Freitag 15.01. 16:45 - 20:00 Digital
- Freitag 22.01. 16:45 - 20:00 Digital
- Freitag 29.01. 16:45 - 20:00 Digital
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
The course will be graded on a basis of 100 points in total:
• 100-87 points: Excellent (1)
• 86-75 points: Good (2)
• 74-63 points: Satisfactory (3)
• 62-50 points: Sufficient (4)
• 49-0 points: Unsatisfactory (5) (fail)
• 100-87 points: Excellent (1)
• 86-75 points: Good (2)
• 74-63 points: Satisfactory (3)
• 62-50 points: Sufficient (4)
• 49-0 points: Unsatisfactory (5) (fail)
Mindestanforderungen und Beurteilungsmaßstab
Assessment criteria:
• 10% Active participation
• 25% Homework assignments (via Moodle)
• 20% Presentation (debriefing) of homework assignments
• 15% In-class quizzes
• 15% Final Exam
• 15% Final Project• A positive score (>50%) in each of the above criteria is required for passing the course.
• Regular participation in at least 90% of sessions is obligatory.
• 10% Active participation
• 25% Homework assignments (via Moodle)
• 20% Presentation (debriefing) of homework assignments
• 15% In-class quizzes
• 15% Final Exam
• 15% Final Project• A positive score (>50%) in each of the above criteria is required for passing the course.
• Regular participation in at least 90% of sessions is obligatory.
Prüfungsstoff
Exam questions will be based on what we discuss in class, the readings and the homework assignments.
Literatur
• https://www.python.org/doc/
• Further readings will be announced in the course
• Further readings will be announced in the course
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Fr 12.05.2023 00:18
• basic concepts of computation
• analytical, systemic and algorithmic thinking
• applied problem-solving skills
• working knowledge of programming (using Python), skills related to programming and application of programming in cognitive science
• practical skills related to design, implementation, and evaluation of computer-based empirical experiments, data collection, data representation, data analysis, data visualisation, etc.
• basic understanding of the role of computer science in cognitive science
• basic understanding of human-centric approaches in computer science as well as cognitive science
• basic understanding of ethics and accountability in computer science as well as cognitive science____ COVID 19 Updates ____Considering the current developments related to COVID-19, the course will be held fully online.The decisions/updates, as well as detailed instructions will be announced via Moodle platform or email.All communications, lectures, assignments, presentations, group-works, projects, evaluations, as well as exams will be done online.– Course mode:
–– Distance mode (fully online)– Teaching/learning methods:
– – Virtual synchronous course units,
– – Self-study with literature and online resources,
– – Virtual group-works,
– – Online exams,
– – Online presentations,
– – Virtual coaching/supervision sessions (if needed)
– – ...– Students are expected to participate in announced online sessions, online presentations, online exams, etc.
– Students are expected to construct private virtual communication means for their virtual group works.
– Students are expected to regularly check their emails as well as the course Moodle environment.
– Students are expected to follow all detailed instructions related to remote teaching.
– The assessments will be based on the regular assessment plans (while everything will be done remotely).