Universität Wien
Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.

220043 SE SE Advanced Data Analysis 1 (2023S)

Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 30 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

  • Mittwoch 22.03. 09:45 - 13:00 Seminarraum 6, Kolingasse 14-16, EG00
  • Mittwoch 19.04. 09:45 - 13:00 Seminarraum 6, Kolingasse 14-16, EG00
  • Mittwoch 03.05. 09:45 - 13:00 Seminarraum 6, Kolingasse 14-16, EG00
  • Mittwoch 17.05. 09:45 - 13:00 Seminarraum 6, Kolingasse 14-16, EG00
  • Mittwoch 31.05. 09:45 - 13:00 Seminarraum 6, Kolingasse 14-16, EG00
  • Mittwoch 14.06. 09:45 - 13:00 Seminarraum 6, Kolingasse 14-16, EG00
  • Mittwoch 28.06. 09:45 - 13:00 Seminarraum 6, Kolingasse 14-16, EG00

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

Network analysis:
In the digital age, networks are ubiquitous, be it social networks of friends or interaction partners on social media, semantic networks of words or concepts, or technical networks such as hyperlink networks connecting information sources on the web. Switching back and forth between lectures and hands-on exercises in R and Gephi, you will learn the basics of quantitative network analysis and apply metrics and visualization techniques on a sample network in the scope of a group project.

Topics:
• What are networks, and why network analysis?
• Basic graph theory
• Network measures and metrics
• Visualization
• Community detection

The course will be taught on-site as much as possible, with an option to zoom in if necessary (hybrid mode). Moodle will be our home base where you will find all necessary information and materials.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Course grading is based on the presentation and written report of a group project. In this project students apply the learnt techniques of analysis and visualization on a sample network they can choose freely (secondary data analysis). Further details will be provided in class.

Mindestanforderungen und Beurteilungsmaßstab

Ongoing in-class participation and additional readings are basic requirements.

For successfully passing the course, participants have to achieve at least 50% of the total points. Full details on the grading system will be given in class and on Moodle.

Prüfungsstoff

All lectures and tutorials taught in class as well as related readings and materials on Moodle.

Literatur

b. a.

Zuordnung im Vorlesungsverzeichnis

Letzte Änderung: Di 28.02.2023 11:46