Universität Wien
Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.

220043 SE SE Advanced Data Analysis 1 (2024S)

Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 30 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

  • Mittwoch 13.03. 09:45 - 12:45 Seminarraum 4, Währinger Straße 29 1.UG
  • Mittwoch 10.04. 09:45 - 12:45 Seminarraum 4, Währinger Straße 29 1.UG
  • Mittwoch 24.04. 09:45 - 12:45 Seminarraum 4, Währinger Straße 29 1.UG
  • Mittwoch 15.05. 09:45 - 12:45 Seminarraum 4, Währinger Straße 29 1.UG
  • Mittwoch 29.05. 09:45 - 12:45 Seminarraum 4, Währinger Straße 29 1.UG
  • Mittwoch 12.06. 09:45 - 12:45 Seminarraum 4, Währinger Straße 29 1.UG
  • Mittwoch 26.06. 09:45 - 12:45 Seminarraum 4, Währinger Straße 29 1.UG

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

This data analysis seminar focuses on advanced data analysis with R. Following a recapitulation of the basics of regression analysis, the seminar will address 1) Structural Equation Modeling including CFA and Path Analyses, 2) Multi-Group Analysis and Measurement Invariance, 3) Moderation and Mediation Analysis, as well as 4) Multi-Level Modeling. Students will also learn how to analyze cross-sectional and longitudinal data.

By the end of this course, participants will be able to:
• Understand the theoretical background of linear regression, moderation, mediation, as well as complex statistical analyses like structural equation and multi-level models
• Know how to use R to run the respective analyses
• Know how to visualize, report and interpret the obtained results

Art der Leistungskontrolle und erlaubte Hilfsmittel

Course grading is based on the presentation and written report of a group project. In this project students apply the learnt techniques of analysis on a provided dataset (secondary data analysis). Further details will be provided in class.

Mindestanforderungen und Beurteilungsmaßstab

Ongoing in-class participation and additional readings are basic requirements.

For successfully passing the course, participants have to achieve at least 50% of the total points. Full details on the grading system will be given in class and on Moodle.

Prüfungsstoff

All lectures and tutorials taught in class as well as related readings and materials on Moodle.

Literatur


Zuordnung im Vorlesungsverzeichnis

Letzte Änderung: Fr 01.03.2024 12:06