Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
220050 SE SE Advanced Data Analysis 2 (2022S)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 21.02.2022 09:00 bis Mi 23.02.2022 18:00
- Abmeldung bis Do 31.03.2022 23:59
Details
max. 30 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Montag 07.03. 09:45 - 11:15 Seminarraum 5, Währinger Straße 29 1.UG
- Montag 14.03. 09:45 - 11:15 Seminarraum 5, Währinger Straße 29 1.UG
- Montag 21.03. 09:45 - 11:15 Seminarraum 5, Währinger Straße 29 1.UG
- Montag 28.03. 09:45 - 11:15 Seminarraum 5, Währinger Straße 29 1.UG
- Montag 04.04. 09:45 - 11:15 Seminarraum 5, Währinger Straße 29 1.UG
- Montag 25.04. 09:45 - 11:15 Seminarraum 5, Währinger Straße 29 1.UG
- Montag 02.05. 09:45 - 11:15 Seminarraum 5, Währinger Straße 29 1.UG
- Montag 09.05. 09:45 - 11:15 Seminarraum 5, Währinger Straße 29 1.UG
- Montag 16.05. 09:45 - 11:15 Seminarraum 5, Währinger Straße 29 1.UG
- Montag 23.05. 09:45 - 11:15 Seminarraum 5, Währinger Straße 29 1.UG
- Montag 30.05. 09:45 - 11:15 Seminarraum 5, Währinger Straße 29 1.UG
- Montag 13.06. 09:45 - 11:15 Seminarraum 5, Währinger Straße 29 1.UG
- Montag 20.06. 09:45 - 11:15 Seminarraum 5, Währinger Straße 29 1.UG
- Montag 27.06. 09:45 - 11:15 Seminarraum 5, Währinger Straße 29 1.UG
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
The assessment includes online questionnaires distributed at the end of each learning unit to assess the understanding of key concepts. The results of each of the five questionnaires (one for each learning unit) will constitute 60% of the final grade.The evaluation also includes a final data analysis project to be conducted in small groups during the course and presented in class at the end of the course. This constitutes a total of 40% of the final grade.
Mindestanforderungen und Beurteilungsmaßstab
Continuous participation in class, reading, home study, and exercise, are fundamental requirements.Elementary knowledge of algebra is assumed, so as to be able to read the regression equations and perform a basic calculation with variables. Moderate proficiency in R and R programming is preferable, but not necessary since the first part of the course will provide a hands-on introduction to this matter. The course will be intensive for everyone, and those with no experience in programming and data analysis should expect the course to be a bit more demanding. Home study and exercise will be required to meet the course objectives.A laptop is also necessary (Windows or Mac indifferently).
Prüfungsstoff
Examination topics consist of the content of the learning units.Required knowledge and practical skills will be conveyed during the lectures.The slides used during the lectures will be shared on Moodle.Additional readings will be also shared on Moodle.
Literatur
The official handbook of the course is:Andrew F. Hayes. Introduction to Mediation, Moderation, and Conditional Process Analysis. A Regression-Based Approach. 2018. SECOND EDITION. THE GUILFORD PRESS, New York, London.
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Do 03.03.2022 15:28
• UNIT 2: The second part of the course will be dedicated to presenting the principles of regression analysis, and explaining how to fit, visualize, interpret, and evaluate regression models in R.
• UNIT 3: The third unit will be dedicated to mediation analysis, and explaining how to fit, visualize, interpret, and evaluate mediation models using PROCESS in the R environment.
• UNIT 4: The fourth learning unit will be dedicated to moderation analysis, and explaining how to fit, visualize, interpret, and evaluate moderation models using PROCESS in the R environment.
• UNIT 5: The fifth learning unit will be dedicated to conditional process analysis, and explaining how to fit, visualize, interpret, and evaluate conditional process models using PROCESS in the R environment.By the end of this course, participants will be able to:
• Run and interpret the results of linear regression, moderation, mediation, and conditional process models.
• Know how to test competing theories of mechanisms statistically through the comparison of indirect effects in models with multiple mediators.
• Know how to visualize and probe interactions in regression models in order to interpret interaction effects in the appropriate ways.
• Know how to estimate the contingencies of mechanisms through the computation and inference about conditional indirect effects.
• Know how to R language and PROCESS to run, visualize, and understand linear regression, moderation, mediation, and conditional process models.