Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
220050 SE SE Advanced Data Analysis 2 (2023S)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 20.02.2023 09:00 bis Mi 22.02.2023 18:00
- Abmeldung bis Fr 31.03.2023 23:59
Details
max. 30 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Dienstag 14.03. 09:45 - 11:15 Seminarraum 9, Währinger Straße 29 2.OG
- Dienstag 21.03. 09:45 - 11:15 Seminarraum 9, Währinger Straße 29 2.OG
- Dienstag 28.03. 09:45 - 11:15 Seminarraum 9, Währinger Straße 29 2.OG
- Dienstag 18.04. 09:45 - 11:15 Seminarraum 9, Währinger Straße 29 2.OG
- Dienstag 25.04. 09:45 - 11:15 Seminarraum 9, Währinger Straße 29 2.OG
- Mittwoch 03.05. 13:15 - 14:45 Seminarraum 9, Währinger Straße 29 2.OG
- Dienstag 09.05. 09:45 - 11:15 Seminarraum 9, Währinger Straße 29 2.OG
- Dienstag 16.05. 09:45 - 11:15 Seminarraum 9, Währinger Straße 29 2.OG
- Dienstag 23.05. 09:45 - 11:15 Seminarraum 9, Währinger Straße 29 2.OG
- Dienstag 06.06. 09:45 - 11:15 Seminarraum 9, Währinger Straße 29 2.OG
- Donnerstag 15.06. 11:15 - 12:45 Seminarraum 5, Währinger Straße 29 1.UG
- Dienstag 20.06. 09:45 - 11:15 Seminarraum 9, Währinger Straße 29 2.OG
- Dienstag 27.06. 09:45 - 11:15 Seminarraum 9, Währinger Straße 29 2.OG
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
The assessment includes two online quizzes to assess the understanding of key concepts. The results of each questionnaire will constitute 50% of the final grade.The evaluation also includes a final data analysis project to be conducted in small groups during the course. This constitutes a total of 50% of the final grade.
Mindestanforderungen und Beurteilungsmaßstab
Continuous participation in class, reading, home study, and exercise are fundamental requirements. In particular, attendance is positively evaluated.Some knowledge of algebra is assumed to read regression equations and perform basic calculations with variables.Moderate proficiency in R and R programming is required (the first part of the course will provide a quick hands-on introduction).Home study and exercise are required to meet the course objectives.Participants must bring a laptop to class with R and RStudio installed beforehand to follow the coding sessions.
Prüfungsstoff
Examination topics consist of the content of the learning units.Required knowledge and practical skills will be conveyed during the lectures.The slides used during the lectures will be shared on Moodle.Additional readings will also be shared on Moodle.
Literatur
The official handbook of the course is:Andrew F. Hayes. Introduction to Mediation, Moderation, and Conditional Process Analysis. A Regression-Based Approach. 2018. SECOND EDITION. THE GUILFORD PRESS, New York, London.
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Mi 07.06.2023 08:47
• We'll next focus on mediation analysis, seeing how to fit, visualize, interpret, and evaluate mediation models using PROCESS in the R environment.
• The next learning unit will be dedicated to moderation analysis and explaining how to fit, visualize, interpret, and evaluate moderation models using PROCESS in the R environment.
• The final learning unit will be dedicated to an overview of conditional process analysis and explaining how to fit, visualize, interpret, and evaluate conditional process models using PROCESS in the R environment.The last part of the course will be dedicated to the project work.By the end of this course, participants will be able to:
• Run and interpret the results of linear regression, moderation, mediation, and conditional process models.
• Know how to test competing theories of mechanisms statistically through the comparison of indirect effects in models with multiple mediators.
• Know how to visualize and probe interactions in regression models to interpret interaction effects appropriately.
• Know how to estimate the contingencies of mechanisms through the computation and inference about conditional indirect effects.
• Know how to R language and PROCESS to run, visualize, and understand linear regression, moderation, mediation, and conditional process models.