Universität Wien
Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.

220077 UE UE Applied Data Analysis (2019W)

Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 30 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

  • Dienstag 08.10. 19:45 - 21:15 Seminarraum 1 2H316 UZA II Rotunde
  • Dienstag 15.10. 19:45 - 21:15 Seminarraum 1 2H316 UZA II Rotunde
  • Dienstag 22.10. 19:45 - 21:15 Seminarraum 1 2H316 UZA II Rotunde
  • Dienstag 29.10. 19:45 - 21:15 Seminarraum 1 2H316 UZA II Rotunde
  • Dienstag 05.11. 19:45 - 21:15 Seminarraum 1 2H316 UZA II Rotunde
  • Dienstag 12.11. 19:45 - 21:15 Seminarraum 1 2H316 UZA II Rotunde
  • Dienstag 19.11. 19:45 - 21:15 Seminarraum 1 2H316 UZA II Rotunde
  • Dienstag 26.11. 19:45 - 21:15 Seminarraum 1 2H316 UZA II Rotunde
  • Dienstag 03.12. 19:45 - 21:15 Seminarraum 1 2H316 UZA II Rotunde
  • Dienstag 10.12. 19:45 - 21:15 Seminarraum 1 2H316 UZA II Rotunde
  • Dienstag 17.12. 19:45 - 21:15 Seminarraum 1 2H316 UZA II Rotunde
  • Dienstag 07.01. 19:45 - 21:15 Seminarraum 1 2H316 UZA II Rotunde
  • Dienstag 14.01. 19:45 - 21:15 Seminarraum 1 2H316 UZA II Rotunde
  • Dienstag 21.01. 19:45 - 21:15 Seminarraum 1 2H316 UZA II Rotunde
  • Dienstag 28.01. 19:45 - 21:15 Seminarraum 1 2H316 UZA II Rotunde

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

The objective of this class is to make students acquaintance with basic theoretical and practical statistical and quantitative research concepts in communication research. After the completion of the class, students should be able to plan and construct most commonly needed quantitative analyses in our field based on their own quantitative research designs.

The content of the class will generically cover fundamental mathematical processes for all statistical tests. However, more emphasis will be placed on the general understanding of all necessary methodological concepts to execute quantitative empirical tests with SPSS.

Students will be proficient interpreting SPSS outputs, creating tables ready to be published in academic journals, and discussing as well as interpreting most common quantitative findings in our field.
In sum, the overall goal of the class is to provide students with the necessary conceptual and practical skills to feel comfortable collecting and analyzing data based on their own research questions and designs.

In order to do so, the following topics will be covered:

Introduction to SPSS
SPSS Data File Creation / Handling
Data Modification and File Management
Frequency, Distribution, and Graphics
Central Tendency and Split Files
Variance, Standard Deviation, and Standard Scores
Correlation
Internal Reliability
Factor Analysis
T-Test
ANOVA
Association versus Causality
Partial Correlation
Linear Regression

Attention: The courses VO Introduction to Data Analysis and UE Applied Data Analysis are linked. Phases of lecture and exercise will alternate.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Assessment will be based on the following course requirements:
Participation and Attendance: 20%
Exercises: In-Class / Homework: 80%

Mindestanforderungen und Beurteilungsmaßstab

The grading scheme reads as follows:
A = 1 (Very Good): 87 - 100%
B = 2 (Good): 75 - 86,99%
C = 3 (Satisfactory): 63 - 74,99%
D = 4 (Enough): 50 - 62,99%
F = 5 (Not Enough): 00 - 49,99%
Class attendance is mandatory.

Prüfungsstoff

Literatur

Hayes, A. F. (2005). Statistical methods for communication science. Mahwah, NJ: Erlbaum.
Cramer, D. (1998). Fundamental statistics for social research: Step-by-step calculations and computer techniques using SPSS for Windows. New York, NY: Routledge.
Morgan, G. A., Leech, N. L., Gloeckner, G. W., & Barrett, K. C. (2012). IBM SPSS for introductory statistics. Use and interpretation. New York, NY: Routledge.

Zuordnung im Vorlesungsverzeichnis

Letzte Änderung: Sa 02.04.2022 00:23