Universität Wien
Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.

240090 UE MM1 - Methoden der quantitativen Entwicklungsforschung (2024S)

Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 30 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

  • Montag 11.03. 09:45 - 11:15 Seminarraum 7, Kolingasse 14-16, OG01
  • Montag 18.03. 09:45 - 11:15 Seminarraum 7, Kolingasse 14-16, OG01
  • Montag 08.04. 09:45 - 11:15 Seminarraum 7, Kolingasse 14-16, OG01
  • Montag 15.04. 09:45 - 11:15 Seminarraum 7, Kolingasse 14-16, OG01
  • Montag 22.04. 09:45 - 11:15 Seminarraum 7, Kolingasse 14-16, OG01
  • Montag 29.04. 09:45 - 11:15 Seminarraum 7, Kolingasse 14-16, OG01
  • Montag 06.05. 09:45 - 11:15 Seminarraum 7, Kolingasse 14-16, OG01
  • Montag 13.05. 09:45 - 11:15 Seminarraum 7, Kolingasse 14-16, OG01
  • Montag 27.05. 09:45 - 11:15 Seminarraum 7, Kolingasse 14-16, OG01
  • Montag 03.06. 09:45 - 11:15 Seminarraum 7, Kolingasse 14-16, OG01
  • Montag 10.06. 09:45 - 11:15 Seminarraum 7, Kolingasse 14-16, OG01
  • Montag 17.06. 09:45 - 11:15 Seminarraum 7, Kolingasse 14-16, OG01
  • Montag 24.06. 09:45 - 11:15 Seminarraum 7, Kolingasse 14-16, OG01

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

This is a course in applied statistics. Its main goal is for students to develop the foundations necessary to implement quantitative empirical research independently. For this purpose, they are required to carry out a number of "hands-on" applications. The course is taught at an introductory level.

The course is taught on site.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Students are graded according to three homeworks (20% each) and a final project (40%). Failure to hand in any of these implies a negative evaluation of the course.

Mindestanforderungen und Beurteilungsmaßstab

Students should prove a good command (at least 50%) of the course’s topics; 50% - 59% implies a 4; 60% - 69%, a 3; 70% - 84%, a 2; 85% - 100%, a 1.

Prüfungsstoff

Topics: descriptive statistics, probability, random variables, statistical inference, regression analysis, causal inference

Literatur

The course is strongly (but not exclusively) based on Newbold, Carlson and Thorne (2013): Statistics for Business and Economics, Pearson, 8th edition. Other introductory statistics textbooks (two examples below) provide similar treatments. Eventual additional materials will be listed in the course's syllabus.
- Larsen and Marx (2012): An Introduction to Mathematical Statistics and its Applications, Prentice Hall
- Shafer and Zhang (2012): Beginning Statistics (legally available online for free).

Zuordnung im Vorlesungsverzeichnis

MM1

Letzte Änderung: Mi 31.07.2024 12:06