Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
240090 UE MM1 - Methoden der quantitativen Entwicklungsforschung (2024S)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Di 20.02.2024 09:00 bis Fr 01.03.2024 14:00
- Abmeldung bis So 31.03.2024 23:59
Details
max. 30 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Montag 11.03. 09:45 - 11:15 Seminarraum 7, Kolingasse 14-16, OG01
- Montag 18.03. 09:45 - 11:15 Seminarraum 7, Kolingasse 14-16, OG01
- Montag 08.04. 09:45 - 11:15 Seminarraum 7, Kolingasse 14-16, OG01
- Montag 15.04. 09:45 - 11:15 Seminarraum 7, Kolingasse 14-16, OG01
- Montag 22.04. 09:45 - 11:15 Seminarraum 7, Kolingasse 14-16, OG01
- Montag 29.04. 09:45 - 11:15 Seminarraum 7, Kolingasse 14-16, OG01
- Montag 06.05. 09:45 - 11:15 Seminarraum 7, Kolingasse 14-16, OG01
- Montag 13.05. 09:45 - 11:15 Seminarraum 7, Kolingasse 14-16, OG01
- Montag 27.05. 09:45 - 11:15 Seminarraum 7, Kolingasse 14-16, OG01
- Montag 03.06. 09:45 - 11:15 Seminarraum 7, Kolingasse 14-16, OG01
- Montag 10.06. 09:45 - 11:15 Seminarraum 7, Kolingasse 14-16, OG01
- Montag 17.06. 09:45 - 11:15 Seminarraum 7, Kolingasse 14-16, OG01
- Montag 24.06. 09:45 - 11:15 Seminarraum 7, Kolingasse 14-16, OG01
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
This is a course in applied statistics. Its main goal is for students to develop the foundations necessary to implement quantitative empirical research independently. For this purpose, they are required to carry out a number of "hands-on" applications. The course is taught at an introductory level.The course is taught on site.
Art der Leistungskontrolle und erlaubte Hilfsmittel
Students are graded according to three homeworks (20% each) and a final project (40%). Failure to hand in any of these implies a negative evaluation of the course.
Mindestanforderungen und Beurteilungsmaßstab
Students should prove a good command (at least 50%) of the course’s topics; 50% - 59% implies a 4; 60% - 69%, a 3; 70% - 84%, a 2; 85% - 100%, a 1.
Prüfungsstoff
Topics: descriptive statistics, probability, random variables, statistical inference, regression analysis, causal inference
Literatur
The course is strongly (but not exclusively) based on Newbold, Carlson and Thorne (2013): Statistics for Business and Economics, Pearson, 8th edition. Other introductory statistics textbooks (two examples below) provide similar treatments. Eventual additional materials will be listed in the course's syllabus.
- Larsen and Marx (2012): An Introduction to Mathematical Statistics and its Applications, Prentice Hall
- Shafer and Zhang (2012): Beginning Statistics (legally available online for free).
- Larsen and Marx (2012): An Introduction to Mathematical Statistics and its Applications, Prentice Hall
- Shafer and Zhang (2012): Beginning Statistics (legally available online for free).
Zuordnung im Vorlesungsverzeichnis
MM1
Letzte Änderung: Mi 31.07.2024 12:06