Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
240096 SE An anthropologist's suggestion on mathematics education (P4) (2014S)
Prüfungsimmanente Lehrveranstaltung
Labels
DO 13.03.2014 09.45-11.15 Ort: Seminarraum A, NIG 4. Stock;
FR 14.03.2014 09.45-11.15 Ort: Seminarraum A, NIG 4. Stock und
FR 14.03.2014 14.00-15.30 Ort: Seminarraum A, NIG 4. Stock;
MO 17.03.2014 09.45-11.15 Ort: Seminarraum A, NIG 4. Stock und
MO 17.03.2014 14.00-15.30 Ort: Übungsraum (A414) NIG 4. Stock;
DI 18.03.2014 09.45-11.15 Ort: Hörsaal C, NIG 4. Stock und
DI 18.03.2014 14-15.30 Ort: Sitzungszimmer, NIG 4. Stock;
MI 19.03.2014 09.45-11.15 Ort: Seminarraum A, NIG 4. Stock;
DO 20.03.2014 09.45-11.15 Ort: Seminarraum A, NIG 4. Stock;
FR 21.03.2014 09.45-11.15 Ort: Seminarraum A, NIG 4. Stock;
DI 25.03.2014 09.45-11.15 Ort: Übungsraum (A414) NIG 4. Stock
FR 14.03.2014 09.45-11.15 Ort: Seminarraum A, NIG 4. Stock und
FR 14.03.2014 14.00-15.30 Ort: Seminarraum A, NIG 4. Stock;
MO 17.03.2014 09.45-11.15 Ort: Seminarraum A, NIG 4. Stock und
MO 17.03.2014 14.00-15.30 Ort: Übungsraum (A414) NIG 4. Stock;
DI 18.03.2014 09.45-11.15 Ort: Hörsaal C, NIG 4. Stock und
DI 18.03.2014 14-15.30 Ort: Sitzungszimmer, NIG 4. Stock;
MI 19.03.2014 09.45-11.15 Ort: Seminarraum A, NIG 4. Stock;
DO 20.03.2014 09.45-11.15 Ort: Seminarraum A, NIG 4. Stock;
FR 21.03.2014 09.45-11.15 Ort: Seminarraum A, NIG 4. Stock;
DI 25.03.2014 09.45-11.15 Ort: Übungsraum (A414) NIG 4. Stock
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Sa 01.02.2014 00:01 bis So 23.02.2014 23:59
- Abmeldung bis So 16.03.2014 23:59
Details
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Mindestanforderungen und Beurteilungsmaßstab
Prüfungsstoff
Lecture 13: working with FORMA, the frame of reference of mathematical operations: the notion of mathematical operations.Syllabus: chapter 5 section 2 of the MSLecture 14: developing a Forma: the six operations of Bishop: counting, designing, , locating, measuring, playing and explaining.Syllabus: chapter 5 section 3 of the MSLecture 15: the five additional operations with mathematical relevance: dancing, generalizing, logical operations, story telling and market activities.Syllabus: last section of the MS.Lecture 16: discussion and roundup: what does an anthropological approach add to the traditional, ‘colonial’ approach to education and what is the political relevance of this kind of approach?Between the lessons I can have contact with students as they see fit. I propose to have a permanent evaluation of them on the basis of their participation in the course.
Literatur
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Mo 07.09.2020 15:39
Abstract:Working with Navajo Indian informants in Arizona, USA I became aware of the capabilities of children and adults to find their way in vast and clearly ‘chaotic’ canyons. One thing I did was describe what people actually did and said about their ways to find the way back home in such contexts.
A second one was to use these data in order to build a curriculum book for a bicultural school on the Navajo reservation.
I start from this example to ask what the political choices are, which I confront when working with such material: how much mathematics (or is it Mathematics) is needed in daily life? And what mathematics should we promote or develop, without becoming colonialist again? I introduce the concept of multimathemacy (after multiliteracy) to discuss the political agenda of ethnomathematics.Lecture 2: Multimathemacy: elaboration of the issues in lecture 1. Discussion of the multimathemacy concept.Syllabus for lectures 1 and 2: ‘Politics in an Indian canyon’Lecture 3: What Ifs: Thinking about education and about training in formal thinking should start from four reflections on learning and situated cognition: the 4 WhatIfs.Syllabus: introduction to the MS ‘Ethnomathematics: anthropology and math.’Lecture 4: the concept of world view in anthropology and beyond: the cognitive anthropological work, the Marxist views and the ‘psychic unity’ hypothesis in anthropology. Recent versions of world view thinking.Syllabus: Chapter on world view in the MSLecture 5: World view and Foreground Knowledge in math education: discussing the place of FK and BK in children attending schools, with feebback to the first lecture.Lecture 6: education in a post-industrial world: shifts in the educational perspective today; impact of schooling on learning in a global context. Views on human beings, society and cultures.Syllabus: Chapter I of the MSLecture 7: learning theories: basic insights into learning theories today. A first introduction to ‘cultural’ learning theories : J.Lave, M. Cole. Basic lines of the socio-cultural theory (Vygotsky).Syllabus: chapter 2 of the MSLecture 8: sociocultural theory and math education: discussing the impact of culturally inspired theories of learning on math education, with special feedback to the case of Chee (lecture 1).Syllabus: chapter 2 (sections 2.3 ) of the MSLecture 9: on the nature of formal thought (math): some philosophy: drawing on views on formal thinking in whitehead , Dingler, and contemporaries like Hersch. .Syllabus: chapter 3 of the MSLecture 10: language and thought: the long history of anthropological work on this issue is relevant in presentday views on math education: linguistic anthropologist D. Hymes, Whorf, but also Campbell’s view on categorizing and thinking..Syllabus: chapter 4 (sections 1 and 2) of the MSLecture 11: mathematician B. Barton takes anthropology to heart. His view on math as language and the impact of such a view on math learning and culture. A critical assessment.Syllabus: last section of chapter 4 of the MSLecture 12: Multimathemacy again: what does this concept stand for? A general introduction with a vivid metaphor. Invitation to use imagination and use drawings.Syllabus : chapter 5, section 1 of the MS