Universität Wien
Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.

250043 VU Kinetic Theory Applied to Biology (2021S)

7.00 ECTS (4.00 SWS), SPL 25 - Mathematik
Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 25 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

  • Freitag 05.03. 13:15 - 16:30 Digital
  • Freitag 19.03. 13:15 - 16:30 Digital
  • Freitag 26.03. 13:15 - 16:30 Digital
  • Freitag 16.04. 13:15 - 16:30 Digital
  • Freitag 23.04. 13:15 - 16:30 Digital
  • Freitag 30.04. 13:15 - 16:30 Digital
  • Freitag 07.05. 13:15 - 16:30 Digital
  • Freitag 14.05. 13:15 - 16:30 Digital
  • Freitag 21.05. 13:15 - 16:30 Digital
  • Freitag 28.05. 13:15 - 16:30 Digital
  • Freitag 04.06. 13:15 - 16:30 Digital
  • Freitag 11.06. 13:15 - 16:30 Digital
  • Freitag 18.06. 13:15 - 16:30 Digital
  • Freitag 25.06. 13:15 - 16:30 Digital

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

Emergent phenomena are ubiquitous in nature: it corresponds to the appearance of large-scale structure from underlying microscopic dynamics. At the microscopic level particles or agents interact following some rules, but the macroscopic structures are not encoded directly in these rules and, therefore, it is a challenge to explain how the macroscopic or observable dynamics emerge from the microscopic ones. Examples of emergence are collective dynamics (flocks of birds, school of fish, pedestrians…), network formation (capillary formation, leaf venation, formation of gullies…), opinion dynamics, tumor growth, tissue development… Understanding emergence in science is key to explaining why observable phenomena take place. The mathematical tools to studying emergence come from kinetic theory, which originally was developed to study problems in Mathematical Physics in the field of gas dynamics. The application of these tools to explore questions coming from biology poses many new interesting challenges at the level of the modeling and mathematical analysis.

This course will be a short introduction to classical and modern techniques in kinetic theory to derive continuum equations from discrete equations.

The topics covered in this course include:
1. What is emergence and how does kinetic theory contributes to its study?
2. Discrete models or agent-based models (ordinary differential equations).
2. Mean-field limits: from discrete models to transport equations.
3. Transport equations: the case of the linear Boltzmann equation, existence of solutions.
3. Hydrodynamic limits: from transport equations to macroscopic models.
a. Boltzmann and Vlasov equations.
b. Hilbert expansion method.
c. Generalised Collision Invariant.

The course will be a combination of theory and exercises done during the class. Articles will be distributed and worked in class in which the theory learned will be applied. The active participation of students during class is expected.

Appropriate breaks will be taken during the class.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Mindestanforderungen und Beurteilungsmaßstab

- Students must attend all classes, only a maximum of 3 can be missed.
- Students must participate during the class activities and do their homework, like solving exercises or commenting on reading articles. Small oral presentations on solutions may be requested.
- Students must do a project that will include a report and a discussion with the lecturer.

Prüfungsstoff

Literatur


Zuordnung im Vorlesungsverzeichnis

MBIV; MAMV;

Letzte Änderung: Fr 12.05.2023 00:21