Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
250045 VO Contact Topology (2021S)
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
Details
Sprache: Deutsch
Prüfungstermine
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
https://univienna.zoom.us/j/95644899647?pwd=V3NNTitXZGdmTWRLR0VVZ3JjNW10QT09
password: closed compact surface of genus 1 (same as for Algebraic Topology)- Donnerstag 04.03. 10:45 - 13:15 Digital
- Donnerstag 11.03. 10:45 - 13:15 Digital
- Donnerstag 18.03. 10:45 - 13:15 Digital
- Donnerstag 25.03. 10:45 - 13:15 Digital
- Donnerstag 15.04. 10:45 - 13:15 Digital
- Donnerstag 22.04. 10:45 - 13:15 Digital
- Donnerstag 29.04. 10:45 - 13:15 Digital
- Donnerstag 06.05. 10:45 - 13:15 Digital
- Donnerstag 20.05. 10:45 - 13:15 Digital
- Donnerstag 27.05. 10:45 - 13:15 Digital
- Donnerstag 10.06. 10:45 - 13:15 Digital
- Donnerstag 17.06. 10:45 - 13:15 Digital
- Donnerstag 24.06. 10:45 - 13:15 Digital
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Oral exam (in case that presence examination is not possible then: online exam)
Mindestanforderungen und Beurteilungsmaßstab
This is an advanced course. Working knowledge of abstract manifolds, as well as some knowledge of Algebraic- and Differential Topology and Differential Geometry is required. (If you are in doubt please write me an email).
Prüfungsstoff
The contents of the course.
Literatur
books:
* Hansjörg Geiges, An introduction to contact topology
* Burak Özbağcı and András Stipsicz, Surgery on contact 3-manifolds and Stein surfacesonline resources:
* Expository articles by John Etnyre: Introductory lectures on contact geometry, Legendrian and transversal knots, open book decompositions and contact structures, and contact geometry in low-dimensional topology
* course notes of Patrick Massot:
Topological methods in 3-dimensional contact geometry
* Hansjörg Geiges, An introduction to contact topology
* Burak Özbağcı and András Stipsicz, Surgery on contact 3-manifolds and Stein surfacesonline resources:
* Expository articles by John Etnyre: Introductory lectures on contact geometry, Legendrian and transversal knots, open book decompositions and contact structures, and contact geometry in low-dimensional topology
* course notes of Patrick Massot:
Topological methods in 3-dimensional contact geometry
Zuordnung im Vorlesungsverzeichnis
MGEV
Letzte Änderung: Sa 23.09.2023 00:20
moving objects or thermodynamics. This lecture will provide an introduction to the rich theory of contact structures mostly on 3-manifolds. After introducing the basics we will talk about convex surfaces, Legendrian and transverse knots and open book decompositions.