250059 VO Combinatorics (2019S)
Labels
An/Abmeldung
Details
Prüfungstermine
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
Combinatorics, in its simplest form, deals with the enumeration of
elements of a finite set. The most frequent basic combinatorial objects
are permutations, rearrangements, lattice paths, trees and graphs.
The appeal of combinatorics comes from the fact that there is no uniform
approach for the treatment of the different problems, but many different
methods, each of which providing a conceptual approach to a particular
type of problem, respectively shedding light on these problems from different
angles. The fact that there are no limitations on imagination in
combinatorics has given a boost to this area in the past.
In particular, the interrelations to other areas, such as theory of
finite groups, representation theory, commutative algebra, algebraic
geometry, computer science, and statistical physics, became more and more
important.
This course will build on the material of the course
"Diskrete Mathematik". Some topics from there will be treated here
in a more profound manner, and there will be new topics,
to be precise:
1. Combinatorial structures and their generating functions
2. P\'olya theory and the enumeration of objects with symmetries
3. Combinatorial theory of partially ordered sets
4. Methods for asymptotic enumeration
Lecture notes are available under
this'>https://www.mat.univie.ac.at/~mfulmek/scripts/KOMBI/skriptum.pdf">this link.Books to be recommended are:
P. Flajolet, R. Sedgewick, "Analytic Combinatorics", Cambridge
University Press, 2009.
P. J. Cameron, "Combinatorics", Cambridge University Press, 1994.
R. P. Stanley, "Enumerative Combinatorics", Vol. 1, Wadsworth \&
Brooks/Cole, 1986.
D. Stanton und D. White, "Constructive Combinatorics",
Springer-Verlag, 1986.
- Montag 04.03. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Dienstag 05.03. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 11.03. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 18.03. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Dienstag 19.03. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 25.03. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Dienstag 26.03. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 01.04. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Dienstag 02.04. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 08.04. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Dienstag 09.04. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 29.04. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Dienstag 30.04. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 06.05. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Dienstag 07.05. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 13.05. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Dienstag 14.05. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 20.05. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Dienstag 21.05. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 27.05. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Dienstag 28.05. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 03.06. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Dienstag 04.06. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 17.06. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Dienstag 18.06. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 24.06. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Dienstag 25.06. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock