Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
250091 VO Number theoretic methods in numerical analysis (2024S)
Labels
MAMV
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
Details
Sprache: Englisch
Prüfungstermine
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
The lecture on 12.06. Is cancelled. Please see the course Moodle for details/homework.
- Mittwoch 06.03. 09:45 - 11:15 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 13.03. 09:45 - 11:15 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 20.03. 09:45 - 11:15 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 10.04. 09:45 - 11:15 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 17.04. 09:45 - 11:15 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 24.04. 09:45 - 11:15 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 08.05. 09:45 - 11:15 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 15.05. 09:45 - 11:15 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 22.05. 09:45 - 11:15 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 29.05. 09:45 - 11:15 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 05.06. 09:45 - 11:15 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 12.06. 09:45 - 11:15 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 19.06. 09:45 - 11:15 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 26.06. 09:45 - 11:15 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
In this lecture, we will develop the fundamental theoretical results underlying the quasi-Monte Carlo method for numerical integration, including the concepts of uniform distribution modulo 1 and discrepancy. In particular, for a chosen, finite point set in the domain of integration, we can bounded the integration error of the quasi-Monte Carlo (QMC) method by a quantity depending solely on the smoothness of the function to be integrated and the discrepancy of the point set (the Koksma-Hlawka inequality). As a consequence, point sets (and sequences) that have low discrepancy are crucial for successful application of QMC. Hence, we will also study some of the most important construction rules for low discrepancy sets.Note: The lecture will be held in English language.
Art der Leistungskontrolle und erlaubte Hilfsmittel
Unless the number of attendees is unexpectedly high, participants that require the ECTS credits can arrange an oral exam with the lecturer. In the oral exam, the candidate should be able to convincingly demonstrate their understanding of the course materials.
Mindestanforderungen und Beurteilungsmaßstab
A positive result on the oral exam is required to pass.
Prüfungsstoff
The exam will cover material selected from all contents of the lecture.
Literatur
This lecture is based on Prof. Friedrich Pillichhammer's (JKU Linz) lecture notes "Zahlentheoretische Methoden in der Numerik" (in German) and the book "Leobacher, G. and Pillichshammer, F., Introduction to Quasi-Monte Carlo Integration and Applications, Birkhäuser/Springer, 2014". The (German) lecture notes will be made available, piece by piece, during the lecture. Unfortunately, at the moment, it is not expect that typeset English lecture notes can be offered.Extended literature suggestions for students interested in delving deeper will be provided when appropriate and/or on request.
Zuordnung im Vorlesungsverzeichnis
MAMV
Letzte Änderung: Mi 28.08.2024 12:06