Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
250100 VO Topics in Integrable Models (2010W)
Labels
Details
Sprache: Englisch
Prüfungstermine
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Donnerstag 07.10. 13:00 - 15:00 Seminarraum S1 Vienna Micro-CT Lab, Althanstraße 12-14
- Donnerstag 14.10. 13:00 - 15:00 Seminarraum S1 Vienna Micro-CT Lab, Althanstraße 12-14
- Donnerstag 21.10. 13:00 - 15:00 Seminarraum S1 Vienna Micro-CT Lab, Althanstraße 12-14
- Donnerstag 28.10. 13:00 - 15:00 Seminarraum S1 Vienna Micro-CT Lab, Althanstraße 12-14
- Donnerstag 04.11. 13:00 - 15:00 Seminarraum S1 Vienna Micro-CT Lab, Althanstraße 12-14
- Donnerstag 11.11. 13:00 - 15:00 Seminarraum S1 Vienna Micro-CT Lab, Althanstraße 12-14
- Donnerstag 18.11. 13:00 - 15:00 Seminarraum S1 Vienna Micro-CT Lab, Althanstraße 12-14
- Donnerstag 25.11. 13:00 - 15:00 Seminarraum S1 Vienna Micro-CT Lab, Althanstraße 12-14
- Donnerstag 02.12. 13:00 - 15:00 Seminarraum S1 Vienna Micro-CT Lab, Althanstraße 12-14
- Donnerstag 09.12. 13:00 - 15:00 Seminarraum S1 Vienna Micro-CT Lab, Althanstraße 12-14
- Donnerstag 16.12. 13:00 - 15:00 Seminarraum S1 Vienna Micro-CT Lab, Althanstraße 12-14
- Donnerstag 13.01. 13:00 - 15:00 Seminarraum S1 Vienna Micro-CT Lab, Althanstraße 12-14
- Donnerstag 20.01. 13:00 - 15:00 Seminarraum S1 Vienna Micro-CT Lab, Althanstraße 12-14
- Donnerstag 27.01. 13:00 - 15:00 Seminarraum S1 Vienna Micro-CT Lab, Althanstraße 12-14
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
oral exam
Mindestanforderungen und Beurteilungsmaßstab
Prüfungsstoff
Literatur
Solitons, by Miwa, Jimbo and Date, Cambridge U Press, 2000
Zuordnung im Vorlesungsverzeichnis
MANV, MALV
Letzte Änderung: Fr 01.10.2021 00:23
sub-topics: Classical Integrable Models, the starting point of which is
nonlinear partial differential equations that typically have soliton
solutions, and Quantum Integrable Models, the starting point of which is
exactly solvable models in statistical mechanics and in quantum field
theory.In this course, we discuss only Classical Integrable Models which by itself
is a very broad subject with many complementary approaches to it, and we
choose to concentrate on an algebraic approach (also known as Sato's Theory)
which plays a central role in modern mathematical physics, particularly
mathematical aspects of string theory.The course has three parts:1. The Lax formulation of integrable models: Integrable nonlinear PDE's are
understood as consistency conditions of systems of linear PDE's (we will see
what this means exactly in due course). This part requires 4 to 5 sets of
2-hour lectures.2. The Fermionic formulation of integrable models: Solutions of integrable
nonlinear PDE's are re-written in terms of expectation values (to be
defined) of fermion (Clifford) operators (also to be defined). This part
requires 4 to 5 sets of 2-hour lectures.In the third part, we can discuss either3A. The Geometric formulation of integrable models: Solutions of integrable
nonlinear PDE's are points on a Grassmannian (to be defined) embedded in a
suitable projective space (also to be defined), or
3B. Applications of the Fermionic formulation to algebraic combinatorial
aspects of problems in modern mathematical physics.Parts 1, 2 and 3A would be based on the textbookSolitons, by Miwa, Jimbo and Date, Cambridge U Press, 2000Part 3B would be based on recent works by various authors, including
Nekrasov, Okounkov, Orlov and collaborators.Prerequisites of the course are basic undergraduate courses, particularly
Calculus, Complex Analysis and Differential Equations.