Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
250135 PS Introductory Seminar on Mathematical Logic (2023S)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von So 12.02.2023 00:00 bis Di 07.03.2023 23:59
- Abmeldung bis Fr 31.03.2023 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
The Introductory Seminar on Mathematical Logic will meet regularly at all dates in the advertised schedule (12 meetings total, all of them Monday mornings 8:00-9:30 in Seminarraum 10, Kolingasse 14-16).
- Montag 06.03. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Montag 20.03. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Montag 27.03. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Montag 17.04. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Montag 24.04. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Montag 08.05. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Montag 15.05. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Montag 22.05. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Montag 05.06. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Montag 12.06. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Montag 19.06. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Montag 26.06. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Students must regularly submit written work, attend the seminar, and present their solutions in class. Any aids may be used.
Mindestanforderungen und Beurteilungsmaßstab
A positive grade of "1" will be earned by students satisfying the following conditions:
1. At least 50% submission of written work.
2. At least 8/12 attendance in class (attendance will be recorded).
3. At least two presentations in class.
1. At least 50% submission of written work.
2. At least 8/12 attendance in class (attendance will be recorded).
3. At least two presentations in class.
Prüfungsstoff
There is no final exam for this course. Course performance will be assessed continuously through submission of written work, attendance, and presentations of solutions in class.
Literatur
The primary literature for the course is the text "A First Journey Through Logic" by Martin Hils and François Loeser, chapters 1-5 (excluding chapter 6, "Axiomatic Set Theory").
Zuordnung im Vorlesungsverzeichnis
MLOL
Letzte Änderung: Di 14.03.2023 12:09
The content of the course is essentially chapter 1-5 of the course text (see below), although we might make some changes.
The content will primarily be taught in the lecture portion of this course; in this Seminar we will primarily discuss exercises related to the content of the course.