Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
250150 VO Low dimensional topology (2022W)
Labels
VOR-ORT
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
Details
Sprache: Englisch
Prüfungstermine
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
as I said earlier, I will be organizing a winter school in Budapest in the end of January, and thus I won't be able to keep 2 of the classes on Jan 23 and on the 24th.
In the remaining classes, I want to talk about 4 manifolds and Kirby calculus and give you a taste of Heegaard Floer homology.- Montag 03.10. 09:45 - 11:15 Digital
- Dienstag 04.10. 11:30 - 13:00 Digital
- Montag 10.10. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Dienstag 11.10. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 17.10. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Dienstag 18.10. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 24.10. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Dienstag 25.10. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 31.10. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 07.11. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Dienstag 08.11. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 14.11. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Dienstag 15.11. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 21.11. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Dienstag 22.11. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 28.11. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Dienstag 29.11. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 05.12. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Dienstag 06.12. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 12.12. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Dienstag 13.12. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 09.01. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Dienstag 10.01. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 16.01. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Dienstag 17.01. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 23.01. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Dienstag 24.01. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 30.01. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Dienstag 31.01. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Oral exam after the end of the course.If you would like to take an oral exam, then you should-choose a topic that is about 3-4 lecture-worth of material,-email me your topic choice and your wished dates for the exam,-I will then approve your topic choice and suggest a concrete exam date and time,-the exam can be held both in person or online, (I think in person is just a better experience for both of us, but I understand that online might work better for scheduling, so let's see).
Mindestanforderungen und Beurteilungsmaßstab
Prüfungsstoff
The contents of the course.
Literatur
Differential Topology:
>J. Milnor: Morse Theory>Morris W. Hirsch: Differential Topologyknots:
>G. Burde, M. Heusener and H. Zieschang: Knots3-manifolds:
>Allen Hatcher: Notes on Basic 3-Manifold Topology
https://pi.math.cornell.edu/~hatcher/3M/3Mdownloads.html>Bruno Martelli: An introduction to Geometric Topology
https://people.dm.unipi.it/martelli/Geometric_topology.pdf>Dale Rolfsen: Knots and Links4-manifolds:
>R. Gompf und A. Stipsicz: 4-Manifolds and Kirby Calculus
>J. Milnor: Morse Theory>Morris W. Hirsch: Differential Topologyknots:
>G. Burde, M. Heusener and H. Zieschang: Knots3-manifolds:
>Allen Hatcher: Notes on Basic 3-Manifold Topology
https://pi.math.cornell.edu/~hatcher/3M/3Mdownloads.html>Bruno Martelli: An introduction to Geometric Topology
https://people.dm.unipi.it/martelli/Geometric_topology.pdf>Dale Rolfsen: Knots and Links4-manifolds:
>R. Gompf und A. Stipsicz: 4-Manifolds and Kirby Calculus
Zuordnung im Vorlesungsverzeichnis
MGEV
Letzte Änderung: Do 09.11.2023 11:48
https://univienna.zoom.us/j/6219689264?pwd=YzNEMkRCMkFSbUZWVzVpUmdXaEUvZz09Meeting ID: 621 968 9264
Passcode: torusLow dimensional topology is the study of (smooth) 3- and 4- dimensional manifolds (=spaces that can be modelled on the Euclidian 3- or 4-space). A classical way of studying 3-manifolds is by understanding embedded submanifolds: knots and surfaces.Thus as a warm-up, we will spend some lectures on knots in the 3-space.We will then briefly introduce notions and constructions from Differential Topology concentrating on Morse theory and its consequences. And use surfaces (2-dimensional manifolds) as basic examples.We will then move on to the study of 3-manifolds by first giving some constructions, and then understanding the specifics of the Algebraic Topological invariants of 3-manifolds. Next, we will decompose 3-manifolds into simple pieces first along spheres and then tori. We then discuss Dehn surgery along knots, as a specific construction.As a reformulation of Morse theory, we will give a compact description of 4-manifolds called Kirby diagrams, and discuss Kirby calculus.If time permits we will briefly discuss recent methods to study 3- and 4-manifolds.