Universität Wien
Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.

250150 VO Low dimensional topology (2022W)

6.00 ECTS (4.00 SWS), SPL 25 - Mathematik
VOR-ORT

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

Sprache: Englisch

Prüfungstermine

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

as I said earlier, I will be organizing a winter school in Budapest in the end of January, and thus I won't be able to keep 2 of the classes on Jan 23 and on the 24th.

In the remaining classes, I want to talk about 4 manifolds and Kirby calculus and give you a taste of Heegaard Floer homology.

  • Montag 03.10. 09:45 - 11:15 Digital
  • Dienstag 04.10. 11:30 - 13:00 Digital
  • Montag 10.10. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 11.10. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 17.10. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 18.10. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 24.10. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 25.10. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 31.10. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 07.11. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 08.11. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 14.11. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 15.11. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 21.11. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 22.11. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 28.11. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 29.11. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 05.12. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 06.12. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 12.12. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 13.12. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 09.01. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 10.01. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 16.01. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 17.01. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 23.01. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 24.01. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 30.01. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 31.01. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

Zoom Link for the first 2 lectures:
https://univienna.zoom.us/j/6219689264?pwd=YzNEMkRCMkFSbUZWVzVpUmdXaEUvZz09

Meeting ID: 621 968 9264
Passcode: torus

Low dimensional topology is the study of (smooth) 3- and 4- dimensional manifolds (=spaces that can be modelled on the Euclidian 3- or 4-space). A classical way of studying 3-manifolds is by understanding embedded submanifolds: knots and surfaces.

Thus as a warm-up, we will spend some lectures on knots in the 3-space.

We will then briefly introduce notions and constructions from Differential Topology concentrating on Morse theory and its consequences. And use surfaces (2-dimensional manifolds) as basic examples.

We will then move on to the study of 3-manifolds by first giving some constructions, and then understanding the specifics of the Algebraic Topological invariants of 3-manifolds. Next, we will decompose 3-manifolds into simple pieces first along spheres and then tori. We then discuss Dehn surgery along knots, as a specific construction.

As a reformulation of Morse theory, we will give a compact description of 4-manifolds called Kirby diagrams, and discuss Kirby calculus.

If time permits we will briefly discuss recent methods to study 3- and 4-manifolds.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Oral exam after the end of the course.

If you would like to take an oral exam, then you should

-choose a topic that is about 3-4 lecture-worth of material,

-email me your topic choice and your wished dates for the exam,

-I will then approve your topic choice and suggest a concrete exam date and time,

-the exam can be held both in person or online, (I think in person is just a better experience for both of us, but I understand that online might work better for scheduling, so let's see).

Mindestanforderungen und Beurteilungsmaßstab

Prüfungsstoff

The contents of the course.

Literatur

Differential Topology:
>J. Milnor: Morse Theory

>Morris W. Hirsch: Differential Topology

knots:
>G. Burde, M. Heusener and H. Zieschang: Knots

3-manifolds:
>Allen Hatcher: Notes on Basic 3-Manifold Topology
https://pi.math.cornell.edu/~hatcher/3M/3Mdownloads.html

>Bruno Martelli: An introduction to Geometric Topology
https://people.dm.unipi.it/martelli/Geometric_topology.pdf

>Dale Rolfsen: Knots and Links

4-manifolds:
>R. Gompf und A. Stipsicz: 4-Manifolds and Kirby Calculus

Zuordnung im Vorlesungsverzeichnis

MGEV

Letzte Änderung: Do 09.11.2023 11:48