Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
250168 VO Populationsdynamik von Infektionskrankheiten (2005W)
Populationsdynamik von Infektionskrankheiten
Labels
Details
Sprache: Deutsch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Dienstag 18.10. 16:00 - 18:00 Seminarraum
- Dienstag 25.10. 16:00 - 18:00 Seminarraum
- Dienstag 08.11. 16:00 - 18:00 Seminarraum
- Dienstag 15.11. 16:00 - 18:00 Seminarraum
- Dienstag 22.11. 16:00 - 18:00 Seminarraum
- Dienstag 29.11. 16:00 - 18:00 Seminarraum
- Dienstag 06.12. 16:00 - 18:00 Seminarraum
- Dienstag 13.12. 16:00 - 18:00 Seminarraum
- Dienstag 10.01. 16:00 - 18:00 Seminarraum
- Dienstag 17.01. 16:00 - 18:00 Seminarraum
- Dienstag 24.01. 16:00 - 18:00 Seminarraum
- Dienstag 31.01. 16:00 - 18:00 Seminarraum
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Mindestanforderungen und Beurteilungsmaßstab
Prüfungsstoff
Literatur
V. Capasso: Mathematical Structures of Epidemic Systems, Springer-Verlag,
Heidelberg,1993V. Capasso - D. Bakstein: An Introduction to Continuous-Time Stochastic
Processes - Theory, Models, and Applications to Finance, Biology, and
Medicine, Birkhauser, Boston,2005.
Heidelberg,1993V. Capasso - D. Bakstein: An Introduction to Continuous-Time Stochastic
Processes - Theory, Models, and Applications to Finance, Biology, and
Medicine, Birkhauser, Boston,2005.
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Mo 07.09.2020 15:40
1.1.1. SIR models
1.1.2. SIS models
1.1.3. The general structure of bilinear models1.2. Epidemic models with two or more interacting populations
1.2.1. Gonorrhea
1.2.2. Host-vector-host systems
1.2.2.1.Malaria
1.2.2.2. Schistosomiasis1.2. Nonconstant population models
1.2.2. Epidemic models with vital dynamics
1.2.3. HIV/AIDS modelling1.3. Multigroup models
1.3.2. Gonorrhea
1.3.3. HIV/AIDS2. Strongly nonlinear models (generalization of the mass-action law)
2.1. Equilbria and their stability
2.2. HIV/AIDS in structured populations3. Cooperative systems
3.1. Epidemic models with positive feedback
3.2. Quasimonotone systems
3.3. Gonorrhea
3.4. Malaria
3.5. Schistosomiasis4. Spatially structured epidemics
4.1. Quasimonotone systems
4.2. Lyapunov methods
4.3. Nonlocal forces of infection
4.3.1. Man-environment-man epidemics
4.3. Front propagation in rabies epidemics
4.4. Saddle-point behaviour5. Age structured epidemics6. Optimal control problems
6.1. Boundary feedback control problems
6.2. Stabilizability by local controlC. Stochastic Models7. The simple stochastic epidemic8. The general stochastic epidemic9. Spatially structured models
9.1. The Neyman-Scott model for spatial epidemics
9.2. Percolation models10. Problems of inference for stochastic models11. Continuous approximation of stochastic models12. Hybrid models for epidemic models12.1. A model for HIV/AIDS in structured populations of drug addicts
12.2. A model for HIV/AIDS with sexual transmission