Universität Wien
Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.

250168 VO Populationsdynamik von Infektionskrankheiten (2005W)

Populationsdynamik von Infektionskrankheiten

0.00 ECTS (2.00 SWS), SPL 25 - Mathematik

Details

Sprache: Deutsch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

  • Dienstag 18.10. 16:00 - 18:00 Seminarraum
  • Dienstag 25.10. 16:00 - 18:00 Seminarraum
  • Dienstag 08.11. 16:00 - 18:00 Seminarraum
  • Dienstag 15.11. 16:00 - 18:00 Seminarraum
  • Dienstag 22.11. 16:00 - 18:00 Seminarraum
  • Dienstag 29.11. 16:00 - 18:00 Seminarraum
  • Dienstag 06.12. 16:00 - 18:00 Seminarraum
  • Dienstag 13.12. 16:00 - 18:00 Seminarraum
  • Dienstag 10.01. 16:00 - 18:00 Seminarraum
  • Dienstag 17.01. 16:00 - 18:00 Seminarraum
  • Dienstag 24.01. 16:00 - 18:00 Seminarraum
  • Dienstag 31.01. 16:00 - 18:00 Seminarraum

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

A. Introduction to population dynamics

B. Deterministic Models

1. (Bi)linear models (The mass-action law)

1.1. One population models
1.1.1. SIR models
1.1.2. SIS models
1.1.3. The general structure of bilinear models

1.2. Epidemic models with two or more interacting populations
1.2.1. Gonorrhea
1.2.2. Host-vector-host systems
1.2.2.1.Malaria
1.2.2.2. Schistosomiasis

1.2. Nonconstant population models
1.2.2. Epidemic models with vital dynamics
1.2.3. HIV/AIDS modelling

1.3. Multigroup models
1.3.2. Gonorrhea
1.3.3. HIV/AIDS

2. Strongly nonlinear models (generalization of the mass-action law)
2.1. Equilbria and their stability
2.2. HIV/AIDS in structured populations

3. Cooperative systems
3.1. Epidemic models with positive feedback
3.2. Quasimonotone systems
3.3. Gonorrhea
3.4. Malaria
3.5. Schistosomiasis

4. Spatially structured epidemics
4.1. Quasimonotone systems
4.2. Lyapunov methods
4.3. Nonlocal forces of infection
4.3.1. Man-environment-man epidemics
4.3. Front propagation in rabies epidemics
4.4. Saddle-point behaviour

5. Age structured epidemics

6. Optimal control problems
6.1. Boundary feedback control problems
6.2. Stabilizability by local control

C. Stochastic Models

7. The simple stochastic epidemic

8. The general stochastic epidemic

9. Spatially structured models
9.1. The Neyman-Scott model for spatial epidemics
9.2. Percolation models

10. Problems of inference for stochastic models

11. Continuous approximation of stochastic models

12. Hybrid models for epidemic models

12.1. A model for HIV/AIDS in structured populations of drug addicts
12.2. A model for HIV/AIDS with sexual transmission

Art der Leistungskontrolle und erlaubte Hilfsmittel

Mindestanforderungen und Beurteilungsmaßstab

Prüfungsstoff

Literatur

V. Capasso: Mathematical Structures of Epidemic Systems, Springer-Verlag,
Heidelberg,1993

V. Capasso - D. Bakstein: An Introduction to Continuous-Time Stochastic
Processes - Theory, Models, and Applications to Finance, Biology, and
Medicine, Birkhauser, Boston,2005.

Zuordnung im Vorlesungsverzeichnis

Letzte Änderung: Mo 07.09.2020 15:40