Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
250170 SE Biomathematische Modelle (2005W)
Biomathematische Modelle
Prüfungsimmanente Lehrveranstaltung
Labels
Details
Sprache: Deutsch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Dienstag 18.10. 11:00 - 12:00 Seminarraum
- Mittwoch 19.10. 11:00 - 12:00 Seminarraum
- Dienstag 25.10. 11:00 - 12:00 Seminarraum
- Dienstag 08.11. 11:00 - 12:00 Seminarraum
- Mittwoch 09.11. 11:00 - 12:00 Seminarraum
- Dienstag 15.11. 11:00 - 12:00 Seminarraum
- Mittwoch 16.11. 11:00 - 12:00 Seminarraum
- Dienstag 22.11. 11:00 - 12:00 Seminarraum
- Mittwoch 23.11. 11:00 - 12:00 Seminarraum
- Dienstag 29.11. 11:00 - 12:00 Seminarraum
- Mittwoch 30.11. 11:00 - 12:00 Seminarraum
- Dienstag 06.12. 11:00 - 12:00 Seminarraum
- Mittwoch 07.12. 11:00 - 12:00 Seminarraum
- Dienstag 13.12. 11:00 - 12:00 Seminarraum
- Mittwoch 14.12. 11:00 - 12:00 Seminarraum
- Dienstag 10.01. 11:00 - 12:00 Seminarraum
- Mittwoch 11.01. 11:00 - 12:00 Seminarraum
- Dienstag 17.01. 11:00 - 12:00 Seminarraum
- Mittwoch 18.01. 11:00 - 12:00 Seminarraum
- Dienstag 24.01. 11:00 - 12:00 Seminarraum
- Mittwoch 25.01. 11:00 - 12:00 Seminarraum
- Dienstag 31.01. 11:00 - 12:00 Seminarraum
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Mindestanforderungen und Beurteilungsmaßstab
Prüfungsstoff
Literatur
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Mo 07.09.2020 15:40
Among other interesting features, these systems lead to selforganizat. phenomena, which exhibit interesting spatial patterns. As an example, here an interacting particle system modelling the social behaviour of ants is proposed, based on a system of stochastic differential equations, driven by social aggregating/repelling "forces". Specific reference to species observed in will be made. Extensions to models of chemotaxis, such as tumor driven angiogenesis will also be presented, in which the so called organizat. process is driven by an underlying biochemical field, strongly coupled with the spatial/geometric structure of the growing tumor. Current interest concerns how do properties on the macroscopic level depend on interactions at the microscopic level. Among the scopes of the seminar, a relevant one is to show how to bridge different scales at which biological processes evolve; in particular suitable "laws of large numbers" are shown to imply convergence of the evolution equations for empirical spatial distributions of interacting individuals to nonlinear reaction-diffusion equations for a so called mean field, as the total number of individuals becomes sufficiently large. We will see how by rather simple models based on stochastic differential equations we may gain remarkable insight in the behaviour of complex systems.