250170 PS Introductory seminar on mathematical logic (2020S)
Prüfungsimmanente Lehrveranstaltung
Labels
Details
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Montag 09.03. 10:30 - 11:55 Seminarraum , UZA Augasse 2-6, 5.Stock Kern D SR5.48
- Montag 16.03. 10:30 - 11:55 Seminarraum , UZA Augasse 2-6, 5.Stock Kern D SR5.48
- Montag 23.03. 10:30 - 11:55 Seminarraum , UZA Augasse 2-6, 5.Stock Kern D SR5.48
- Montag 30.03. 10:30 - 11:55 Seminarraum , UZA Augasse 2-6, 5.Stock Kern D SR5.48
- Montag 20.04. 10:30 - 11:55 Seminarraum , UZA Augasse 2-6, 5.Stock Kern D SR5.48
- Montag 27.04. 10:30 - 11:55 Seminarraum , UZA Augasse 2-6, 5.Stock Kern D SR5.48
- Montag 04.05. 10:30 - 11:55 Seminarraum , UZA Augasse 2-6, 5.Stock Kern D SR5.48
- Montag 11.05. 10:30 - 11:55 Seminarraum , UZA Augasse 2-6, 5.Stock Kern D SR5.48
- Montag 18.05. 10:30 - 11:55 Seminarraum , UZA Augasse 2-6, 5.Stock Kern D SR5.48
- Montag 25.05. 10:30 - 11:55 Seminarraum , UZA Augasse 2-6, 5.Stock Kern D SR5.48
- Montag 08.06. 10:30 - 11:55 Seminarraum , UZA Augasse 2-6, 5.Stock Kern D SR5.48
- Montag 15.06. 10:30 - 11:55 Seminarraum , UZA Augasse 2-6, 5.Stock Kern D SR5.48
- Montag 22.06. 10:30 - 11:55 Seminarraum , UZA Augasse 2-6, 5.Stock Kern D SR5.48
- Montag 29.06. 10:30 - 11:55 Seminarraum , UZA Augasse 2-6, 5.Stock Kern D SR5.48
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
There will be weekly assignments, usually consisting of five exercises.
Mindestanforderungen und Beurteilungsmaßstab
Students are expected to present their solutions at least twice during the semester.
Prüfungsstoff
There will be no exam for the proseminar, but the proseminar will be used to help students prepare for the exam in "Introduction to Mathematical Logic."
Literatur
The reading list will be the same as the one for "Introduction to Mathematical Logic."
Zuordnung im Vorlesungsverzeichnis
MLOL
Letzte Änderung: Mo 07.09.2020 15:21
"Introduction to Mathematical Logic." Concepts and theorems introduced in the lecture course will be considered in greater detail during the proseminar.