Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
250189 VO Advanced Probability Theory (2024S)
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
Details
Sprache: Englisch
Prüfungstermine
- Freitag 28.06.2024 13:15 - 14:45 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Freitag 05.07.2024 13:15 - 14:45 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Freitag 19.07.2024 09:45 - 13:00 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Montag 22.07.2024
- Donnerstag 28.11.2024 16:45 - 18:15 Hörsaal 12 Oskar-Morgenstern-Platz 1 2.Stock
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Freitag 01.03. 13:15 - 14:45 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Mittwoch 06.03. 15:00 - 16:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Freitag 08.03. 13:15 - 14:45 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Mittwoch 13.03. 15:00 - 16:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Freitag 15.03. 13:15 - 14:45 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Mittwoch 20.03. 15:00 - 16:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Freitag 22.03. 13:15 - 14:45 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Mittwoch 10.04. 15:00 - 16:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Freitag 12.04. 13:15 - 14:45 Seminarraum 15 Oskar-Morgenstern-Platz 1 3.Stock
- Mittwoch 17.04. 15:00 - 16:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Freitag 19.04. 13:15 - 14:45 Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Stock
- Mittwoch 24.04. 15:00 - 16:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Freitag 26.04. 13:15 - 14:45 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
- Freitag 03.05. 13:15 - 14:45 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
- Mittwoch 08.05. 15:00 - 16:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Freitag 10.05. 13:15 - 14:45 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
- Mittwoch 15.05. 15:00 - 16:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Freitag 17.05. 13:15 - 14:45 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
- Mittwoch 22.05. 15:00 - 16:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Freitag 24.05. 13:15 - 14:45 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
- Mittwoch 29.05. 15:00 - 16:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Freitag 31.05. 13:15 - 14:45 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
- Mittwoch 05.06. 15:00 - 16:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Freitag 07.06. 13:15 - 14:45 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
- Mittwoch 12.06. 15:00 - 16:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Freitag 14.06. 13:15 - 14:45 Seminarraum 13 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 19.06. 15:00 - 16:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Freitag 21.06. 13:15 - 14:45 Seminarraum 13 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 26.06. 15:00 - 16:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
The course is assessed based on performance in a written exam at the end of the course or after the course. Oral exams may be organized in exceptional cases or for those who wish to retake the exam.
Mindestanforderungen und Beurteilungsmaßstab
To pass the course, the student is required to gain a basic understanding of measure-theoretic probability and to be able to tackle simple common applications of the theory. For a high grade, a good command of the more advanced topics and an ability to apply them in various examples is required. For grade 4, around 50% of the maximum points of the exam will be required.
There are no formal prerequisites for this course. However, some basic measure theory (eg. some of the core contents in the course "Measure and integration theory"), as well as its prerequisites, are necessary to understand the contents of this course. These prerequisites will be quickly reviewed at the beginning of the course, and a student not familiar with measure theory is advised to invest a fair amount of time to study these along the course. Basic skills in (discrete) probability calculus, in the extend of the bachelor course "Probability theory and basic statistics", are very useful as well.
There are no formal prerequisites for this course. However, some basic measure theory (eg. some of the core contents in the course "Measure and integration theory"), as well as its prerequisites, are necessary to understand the contents of this course. These prerequisites will be quickly reviewed at the beginning of the course, and a student not familiar with measure theory is advised to invest a fair amount of time to study these along the course. Basic skills in (discrete) probability calculus, in the extend of the bachelor course "Probability theory and basic statistics", are very useful as well.
Prüfungsstoff
The exam is based on the lecture material of the course. Knowing percolation theory is not formally required in the exam, but many tools involved in it and belonging to the core course material may be asked. Solving exercise problems and participating in the Introductory Seminar (i.e. the exercise class) is very helpful for preparing for the exam, although not formally required.
Literatur
There will be lecture notes, which will be updated along the lectures. Some potentially useful references and materials for further study are the following.
Books:
- P. Billingsley: Probability and measure ( https://www.colorado.edu/amath/sites/default/files/attached-files/billingsley.pdf )
- R. Durrett: Probability: theory and examples ( https://services.math.duke.edu/~rtd/PTE/PTE5_011119.pdf )
- D. Williams: Probability with martingales
- G. Grimmett and D. Stirzaker: Probability and Random Processes
Lecture notes:
- G. Miermont: Advanced probability ( http://perso.ens-lyon.fr/gregory.miermont/AdPr2006.pdf )
- K. Izyurov: Probability theory ( https://wiki.helsinki.fi/display/mathphys/Izyurov?preview=/123044553/213983389/Notes_28.11.pdf )
Books:
- P. Billingsley: Probability and measure ( https://www.colorado.edu/amath/sites/default/files/attached-files/billingsley.pdf )
- R. Durrett: Probability: theory and examples ( https://services.math.duke.edu/~rtd/PTE/PTE5_011119.pdf )
- D. Williams: Probability with martingales
- G. Grimmett and D. Stirzaker: Probability and Random Processes
Lecture notes:
- G. Miermont: Advanced probability ( http://perso.ens-lyon.fr/gregory.miermont/AdPr2006.pdf )
- K. Izyurov: Probability theory ( https://wiki.helsinki.fi/display/mathphys/Izyurov?preview=/123044553/213983389/Notes_28.11.pdf )
Zuordnung im Vorlesungsverzeichnis
MSTW
Letzte Änderung: Do 31.10.2024 11:26
The core contents of the course include:
- definition of probability space and basic notions of measure-theoretic probability
- random variables, expectation, independence
- Borel-Cantelli lemmas, Kolmogorov zero-one law
- law of large numbers
- notions of convergence, such as convergence in probability and weak convergence
- central limit theorem
- conditional expectations
- martingales
- optional stopping
The method of the course is following the lectures and taking a final exam. Attendance in the lectures is strongly recommended since they include all the exam contents as well as enable mutual interaction to provide better understanding. In addition, it is strongly recommended to solve exercise problems and to participate in the exercise classes, which comprise the course "Introductory Seminar on Advanced Probability Theory" ( https://ufind.univie.ac.at/en/course.html?lv=250185&semester=2024S ). The exercises are evaluated separately as part of the "Introductory Seminar" and do not contribute to the grade of this lecture course.