Universität Wien
Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.

260003 VU Scientific image processing (2023W)

5.00 ECTS (3.00 SWS), SPL 26 - Physik
Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 15 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

  • Dienstag 03.10. 09:45 - 12:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
  • Dienstag 10.10. 09:45 - 12:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
  • Dienstag 17.10. 09:45 - 12:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
  • Dienstag 24.10. 09:45 - 12:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
  • Dienstag 31.10. 09:45 - 12:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
  • Dienstag 07.11. 09:45 - 12:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
  • Dienstag 14.11. 09:45 - 12:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
  • Dienstag 21.11. 09:45 - 12:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
  • Dienstag 28.11. 09:45 - 12:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
  • Dienstag 05.12. 09:45 - 12:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
  • Dienstag 12.12. 09:45 - 12:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
  • Dienstag 09.01. 09:45 - 12:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
  • Dienstag 16.01. 09:45 - 12:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
  • Dienstag 23.01. 09:45 - 12:15 PC-Seminarraum 3, Kolingasse 14-16, OG02

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

OBJECTIVES
This course aims to equip students with fundamental knowledge and skills in quantitative image processing and analysis for scientific applications. It will enable students to independently develop, execute, and optimize basic image analysis workflows. The curriculum focuses on extracting meaningful data from images without compromising their integrity.

SYLLABUS
#### Foundational Concepts
- Digital Imaging Basics: Bit depth, color, and lookup tables
- Regions of Interest (ROIs)
- Quantitative Intensity Analysis
- Algebraic Operations with Images

#### Advanced Techniques
- Image Correlations, Convolutions, and Deconvolutions
- Fourier and Other Image Transforms
- Image Filtering Techniques: Linear, Non-linear, and Fourier-based
- Image Thresholding and Segmentation
- Annotation and Labeling of Images

### Instructional Approach
The course adopts an interactive pedagogical model that involves student participation and ongoing assessment through individual and group assignments. While the course is centered around the open-source image analysis software, ImageJ/Fiji, students are encouraged to adapt the workflows to other software or programming languages like Matlab, Labview, C++, Python, Julia, or R.

### Topic Breakdown (Tentative)
1. **Course Introduction**: Image significance; image definitions; scope and limitations of image processing; digital image parameters; image sampling and quantization.

2. **Image Basics**:
a. Histograms, Lookup Tables, Color Formats, Human Visual System, Pseudocolors, and Image Types.
b. Overview of ImageJ/Fiji: Native formats, plugins, properties, and user interface.

3. **ROI and Segmentation**: Managing ROIs, thresholding techniques, and morphological operators in ImageJ/Fiji.

4. **Image Filtering and Macro Operations**: Understanding images as matrices; performing element-wise and matrix operations; utilizing ImageJ/Fiji's math menu and macro functionalities.

5. **Frequency Domain Analysis**: Fourier series and transforms, convolution theorem, sampling theory, and FFT-based filtering.

6. **Advanced Filtering Techniques**: Removing unwanted frequencies and noise; plugin selection for filtering and deconvolution in ImageJ/Fiji.

7. **Temporal and Spatial Image Stacks**: Managing time-lapse images and 3D image stacks in ImageJ/Fiji.

8. **Three-Dimensional Image Analysis**: 3D volumes and corresponding tools in ImageJ/Fiji.

9. **Macro Automation**: Using Fiji's Macro Recorder for task automation.

10. **Object Dynamics Analysis**: Manual versus automatic tracking; particle tracking methodologies.

11. **Image Registration**: Geometrical transformations, affine mappings, and similarity quantification between images; applications in ImageJ/Fiji.

12. **Introduction to Democratic Deep Learning in Image Processing**.

KEY TAKEAWAYS
- The course aims to enable independent development and optimization of image analysis workflows for scientific research.
- A balanced approach combining foundational knowledge and advanced techniques in image processing is adopted.
- Multiple software and language adaptations are encouraged for increased flexibility in implementation.

NOTE
- The curriculum is subject to change based on ongoing assessments and student needs.
- Students are encouraged to install ImageJ/Fiji on their computers for hands-on exercises.

METHODS OF EVALUATION
Continuous assessment based on individual and group activities, both in-class and as homework assignments.

ADDITIONAL RESOURCES
- Open-source software: [ImageJ/Fiji](https://imagej.net/Fiji)
- Optional Software: Matlab, Labview, C++, Python, Julia, R

The course offers a comprehensive yet flexible approach to mastering the critical skill of scientific image analysis, making it invaluable for individuals engaged in modern scientific research.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Evaluation will be conducted through a dual approach consisting of regular weekly assignments, either in-class or as homework, accounting for 50% of the grade, complemented by a final examination that contributes the remaining 50%.

Mindestanforderungen und Beurteilungsmaßstab

Upon completion of both the regular assignments and the final examination, students have the opportunity to earn up to 100 points. A minimum score of 50 points is required to pass the course. The grading scale is delineated as follows:
- 50 points or above: Grade 4
- 60 points or above: Grade 3
- 75 points or above: Grade 2
- 90 points or above: Grade 1

Prüfungsstoff

The examination will encompass the subject matter addressed throughout the duration of the course.

Literatur

Recommended but Not Mandatory Literature:
1) "Digital Image Processing" by Rafael C. Gonzalez and Richard E. Woods, published by Pearson in 2017.
2) "Digital Image Processing" by Wilhelm Burger and Mark J. Burge, published by Springer in 2017.

Zuordnung im Vorlesungsverzeichnis

M-VAF A 2, M-VAF B

Letzte Änderung: Di 03.10.2023 00:05