260014 VU The Physics of Matter-Waves (2019S)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 04.02.2019 08:00 bis Mo 25.02.2019 07:00
- Abmeldung bis Do 21.03.2019 23:59
Details
max. 30 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Montag 04.03. 12:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien (Vorbesprechung)
- Montag 11.03. 12:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Montag 18.03. 12:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Montag 25.03. 12:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Montag 01.04. 12:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Montag 08.04. 12:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Montag 29.04. 12:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Montag 06.05. 12:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Montag 13.05. 12:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Montag 20.05. 12:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Montag 27.05. 12:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Montag 03.06. 12:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Montag 17.06. 12:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Montag 24.06. 12:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
- Weekly ungraded exercises provide the required feedback and training
- Presence in 80% of the exercises is mandatory.
- There will be 2 written tests (à 1 hour ), one in the middle and one at the end of term.
You pass the test with >50% of all possible points. The scale above that is linear.
- Every student will prepare twice a written Latex summary of a lecture sessions (supported
by the info slides and books that we provide) and report on this as a review in the first 20
min of an exercise.Total Grade:
25% first summary: written and oral presentation
25% 2nd summary: written and oral presentation
25% 1st written test
25% 2nd written test
- Presence in 80% of the exercises is mandatory.
- There will be 2 written tests (à 1 hour ), one in the middle and one at the end of term.
You pass the test with >50% of all possible points. The scale above that is linear.
- Every student will prepare twice a written Latex summary of a lecture sessions (supported
by the info slides and books that we provide) and report on this as a review in the first 20
min of an exercise.Total Grade:
25% first summary: written and oral presentation
25% 2nd summary: written and oral presentation
25% 1st written test
25% 2nd written test
Mindestanforderungen und Beurteilungsmaßstab
- Weekly ungraded exercises provide the required feedback and training
- Presence in 80% of the exercises is mandatory.
- There will be 2 written tests (à 1 hour ), one in the middle and one at the end of term.
You pass the test with >50% of all possible points. The scale above that is linear.
- Every student will prepare twice a written Latex summary of a lecture sessions (supported
by the info slides and books that we provide) and report on this as a review in the first 20
min of an exercise.Total Grade:
25% first summary: written and oral presentation
25% 2nd summary: written and oral presentation
25% 1st written test
25% 2nd written test
- Presence in 80% of the exercises is mandatory.
- There will be 2 written tests (à 1 hour ), one in the middle and one at the end of term.
You pass the test with >50% of all possible points. The scale above that is linear.
- Every student will prepare twice a written Latex summary of a lecture sessions (supported
by the info slides and books that we provide) and report on this as a review in the first 20
min of an exercise.Total Grade:
25% first summary: written and oral presentation
25% 2nd summary: written and oral presentation
25% 1st written test
25% 2nd written test
Prüfungsstoff
All lecture and exercise material
Literatur
While a comprehensive single book is still missing, much of the required information is collected also in
1. A.D. Cronin, J. Schmiedmayer, D.E. Pritchard, Optics and interferometry with atoms and molecules, Rev. Mod. Phys. 81, 1051-1129 (2009).
2. Tino G, Kasevich M. Atom Interferometry. IOS (2014).
3. Rauch H, Werner SA. Neutron Interferometry: Oxford University Press (2015).
4. Hasselbach, Progress in electron- and ion-interferometry. Rep. Prog. Phys. 73, 016101
(2010).
5. https://arxiv.org/abs/1501.07770
1. A.D. Cronin, J. Schmiedmayer, D.E. Pritchard, Optics and interferometry with atoms and molecules, Rev. Mod. Phys. 81, 1051-1129 (2009).
2. Tino G, Kasevich M. Atom Interferometry. IOS (2014).
3. Rauch H, Werner SA. Neutron Interferometry: Oxford University Press (2015).
4. Hasselbach, Progress in electron- and ion-interferometry. Rep. Prog. Phys. 73, 016101
(2010).
5. https://arxiv.org/abs/1501.07770
Zuordnung im Vorlesungsverzeichnis
MaG 5, MaG 15, M-VAF A 2, M-VAF B
Letzte Änderung: Mo 07.09.2020 15:40
2 Fundamentals
2.1 Theoretical aspects of coherence
2.2 Density matrices
3 Kirchhoff-Fresnel diffraction theory
3.1 General outline of the problem
3.2 Far-field diffraction and Fourier Transforms
3.3 Near-field diffraction at an edge & slit
3.4 Near-Field diffraction at a grating: the Talbot effect and its applications
4 Sources & Detector Technologies
4.1 Electrons
4.2 Neutrons
4.3 Atoms & Diatomic Molecules
4.4 Macromolecules & Nanoparticles
5 Reminder: Atom-Light interactions
5.1 3 Views on the dipole force
6 Beam splitter concepts (E & T)
6.1 Diffraction at bulk crystals:
6.2 Diffraction at crystal surfaces: electrons & atoms & diatomic molecules
6.3 Diffraction at nanomechanical slits, double slits and gratings: neutrons, electrons, atoms, diatomic and polyatomic molecules
6.4 Measurement-induced optical gratings
6.5 Single-and Two-Photon beam splitters:
6.6 Off-resonant optical beam splitters
7 Interferometer concepts
7.1 Mach Zehnder Interferometer
7.2 Talbot Lau Interferometer
8 Theory of Mach-Zehnder interferometry
8.1 A Feynman Path integral approach
8.2 Phases in perturbed interferometers
9 Theoretical approaches to near-field matter-wave interference
9.1 A wave function approach to near-field interferometry
9.2 A density matrix & Wigner function approach
10 Matter-wave assisted measurement and sensing
10.1 Electrons
10.2 Atoms
10.3 Molecules
11 Matter-Waves observed in the time domain
11.1 Neutron interferometry in time:
11.2 Atom interferometry in time
11.3 Molecules
12 Quantum phases
12.1 Atom interferometers as atomic clocks
12.2 Topological effects etc.
12.3 Entanglement in matter-wave experiments
13 Quantum decoherence & non-standard extensions of the SE
13.1 Theory background
13.2 Experimental decoherence
13.3 Non-standard decoherence & dephasing: Massive clusters & Nanoparticles
14 Boundary conditions for high mass interferometryThis is a VU. The 2 hours of lecture will be complemented by student contributions which vary with the weeks from calculation and computing exercises over paper reports and lectures summaries.