Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
260015 VU Probability and Statistics for Physicists (2025S)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 03.02.2025 08:00 bis Mo 24.02.2025 23:59
- Abmeldung bis Fr 14.03.2025 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- N Dienstag 04.03. 11:30 - 13:00 Seminarraum 18 Kolingasse 14-16, OG02
- Donnerstag 06.03. 09:45 - 12:15 Seminarraum 18 Kolingasse 14-16, OG02
- Dienstag 11.03. 11:30 - 13:00 Seminarraum 18 Kolingasse 14-16, OG02
- Donnerstag 13.03. 09:45 - 12:15 Seminarraum 18 Kolingasse 14-16, OG02
- Dienstag 18.03. 11:30 - 13:00 Seminarraum 18 Kolingasse 14-16, OG02
- Donnerstag 20.03. 09:45 - 12:15 Seminarraum 18 Kolingasse 14-16, OG02
- Dienstag 25.03. 11:30 - 13:00 Seminarraum 18 Kolingasse 14-16, OG02
- Donnerstag 27.03. 09:45 - 12:15 Seminarraum 18 Kolingasse 14-16, OG02
- Dienstag 01.04. 11:30 - 13:00 Seminarraum 18 Kolingasse 14-16, OG02
- Donnerstag 03.04. 09:45 - 12:15 Seminarraum 18 Kolingasse 14-16, OG02
- Dienstag 08.04. 11:30 - 13:00 Seminarraum 18 Kolingasse 14-16, OG02
- Donnerstag 10.04. 09:45 - 12:15 Seminarraum 18 Kolingasse 14-16, OG02
- Dienstag 29.04. 11:30 - 13:00 Seminarraum 18 Kolingasse 14-16, OG02
- Dienstag 06.05. 11:30 - 13:00 Seminarraum 18 Kolingasse 14-16, OG02
- Donnerstag 08.05. 09:45 - 12:15 Seminarraum 18 Kolingasse 14-16, OG02
- Dienstag 13.05. 11:30 - 13:00 Seminarraum 18 Kolingasse 14-16, OG02
- Donnerstag 15.05. 09:45 - 12:15 Seminarraum 18 Kolingasse 14-16, OG02
- Dienstag 20.05. 11:30 - 13:00 Seminarraum 18 Kolingasse 14-16, OG02
- Donnerstag 22.05. 09:45 - 12:15 Seminarraum 18 Kolingasse 14-16, OG02
- Dienstag 27.05. 11:30 - 13:00 Seminarraum 18 Kolingasse 14-16, OG02
- Dienstag 03.06. 11:30 - 13:00 Seminarraum 18 Kolingasse 14-16, OG02
- Donnerstag 05.06. 09:45 - 12:15 Seminarraum 18 Kolingasse 14-16, OG02
- Dienstag 10.06. 11:30 - 13:00 Seminarraum 18 Kolingasse 14-16, OG02
- Donnerstag 12.06. 09:45 - 12:15 Seminarraum 18 Kolingasse 14-16, OG02
- Dienstag 17.06. 11:30 - 13:00 Seminarraum 18 Kolingasse 14-16, OG02
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
The assessment will be done based on two graded homework sets (50%) and a final take-home exam (50%). The graded homework will be assigned at about one- and two-thirds of the semester. Participating in the remaining sessions of ungraded homework sets (which will be distributed ever week or second week) greatly helps you pass the exam. The rules for the take-home exam are those of good scientific practice and read as follows:1. You can use any books you wish and you can discuss with your peers.
2. You should not split the problems to be solved but rather work on each problem yourself and then exchange ideas and/or questions if you so wish.
3. You should acknowledge in writing all external sources you used and all discussions you have had with your peers, naming them.
2. You should not split the problems to be solved but rather work on each problem yourself and then exchange ideas and/or questions if you so wish.
3. You should acknowledge in writing all external sources you used and all discussions you have had with your peers, naming them.
Mindestanforderungen und Beurteilungsmaßstab
Minimum requirement: Active participation in the regular lecture meetings submission of the graded homework and completion of the final, take-home exam.Mark key:
100 - 89 points: mark 1
88 - 76 points: mark 2
75 - 63 points: mark 3
62 - 50 points: mark 4
0 - 49 points: fail
100 - 89 points: mark 1
88 - 76 points: mark 2
75 - 63 points: mark 3
62 - 50 points: mark 4
0 - 49 points: fail
Prüfungsstoff
All the material covered in the course.
Literatur
Vijay K. Rohatgi and A. K. Md. Ehsanes Saleh, An Introduction to Probability and Statistics, Third Edition, Wiley (2015).Athanassios Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw Hill (1981).Wolfgang Paul and Jörg Baschnagel, Stochastic Processes From Physics to Finance, Springer (1999).
Zuordnung im Vorlesungsverzeichnis
ERGB
Letzte Änderung: Di 28.01.2025 13:26
2. Kolmogorov’s axiomatic formulation of probability
3. Conditional probability and independent events
4. Repeated trials (Bernoulli, generalized Bernoulli, Bayes’ Theorem in Statistics)
5. The concept of a random variable (distributions and densities)
6. Functions of a random variable (transformation of densities)
7. Special distributions (Binomial, Normal, Poisson, Gamma, Weibull etc.)
8. Central Limit Theorems (Normal and Levy distributions)
9. Many random variables and multivariate distributions
10. Stochastic processes (stationarity, spectra, differentiability)
11. Brownian movement and Markoff ProcessesMethods:
Weekly lectures with active participation of the students. Additional (graded and ungraded) homework sets will be assigned. In the end of the course, a take-home exam will be administered, please see section "Assessment" below.