Universität Wien
Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.

260025 PUE Allgemeine Relativitätstheorie und Kosmologie (2020S)

4.00 ECTS (2.00 SWS), SPL 26 - Physik
Prüfungsimmanente Lehrveranstaltung

Zusammenfassung

1 Maliborski , Moodle
2 Maliborski , Moodle

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
An/Abmeldeinformationen sind bei der jeweiligen Gruppe verfügbar.

Gruppen

Gruppe 1

max. 25 Teilnehmer*innen
Sprache: Englisch
Lernplattform: Moodle

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

CORONA MODUS: Currently classes are held online via zoom, and all relevant material is accessible on Moodle. Those students that have not received emails or cannot access the Moodle page are requested to contact me by email.

  • Mittwoch 18.03. 10:45 - 12:15 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
  • Mittwoch 25.03. 10:45 - 12:15 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
  • Mittwoch 01.04. 10:45 - 12:15 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
  • Mittwoch 22.04. 10:45 - 12:15 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
  • Mittwoch 29.04. 10:45 - 12:15 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
  • Mittwoch 06.05. 10:45 - 12:15 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
  • Mittwoch 13.05. 10:45 - 12:15 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
  • Mittwoch 20.05. 10:45 - 12:15 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
  • Mittwoch 27.05. 10:45 - 12:15 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
  • Mittwoch 03.06. 10:45 - 12:15 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
  • Mittwoch 10.06. 10:45 - 12:15 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
  • Mittwoch 17.06. 10:45 - 12:15 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
  • Mittwoch 24.06. 10:45 - 12:15 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien

Gruppe 2

max. 25 Teilnehmer*innen
Sprache: Englisch
Lernplattform: Moodle

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

CORONA MODUS: Currently classes are held online via zoom, and all relevant material is accessible on Moodle. Those students that have not received emails or cannot access the Moodle page are requested to contact me by email.

  • Donnerstag 19.03. 16:30 - 18:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Donnerstag 26.03. 16:30 - 18:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Donnerstag 02.04. 16:30 - 18:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Donnerstag 23.04. 16:30 - 18:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Donnerstag 30.04. 16:30 - 18:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Donnerstag 07.05. 16:30 - 18:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Donnerstag 14.05. 16:30 - 18:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Donnerstag 28.05. 16:30 - 18:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Donnerstag 04.06. 16:30 - 18:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Donnerstag 18.06. 16:30 - 18:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Donnerstag 25.06. 16:30 - 18:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

Aims: Competence in solving problems in General Relativity.
Contents: Discussion of problems in the context of the lecture course.
Method: Presentation of solutions by the students.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Examination is inherent in the course. Students may use their prepared notes.

Mindestanforderungen und Beurteilungsmaßstab

Attendance of the course `Relativity and Cosmology I' strongly encouraged.

We expect to cover 2-4 problems in each class. Each week we ask you to upload your written solutions via Moodle. We encourage you to discuss homework with other students, however, the work you hand in should be your formulation and reflection. Use of previous solutions is not allowed. Homework sets must show reasoning leading to the final answers in a clear and readable fashion to obtain credit. Late homeworks are accepted only under serious circumstances. Exercises will be given a weight based on the level of difficulty: easy-1, standard-2, difficult-3. For each set of exercises, the grade will the weighted mean of solved problems.

Feedback on your submission, comments on exercise problems will be uploaded weakly on Moodle.

Each week we schedule online classes on zoom. Participation is not obligatory but is encouraged. During online classes, we discuss exercises, alternative approaches, common problems, and answer your questions.

Alternatively, questions and comments may be posted (and answered!) using Relativityoverflow forum on Moodle.

The final score is an average of the homework grade.

Grading:
Less than 50% of the maximum final score: not sufficient (5)
At least 50% but less than 65%: sufficient (4)
At least 65% but less than 80%: satisfactory (3)
At least 80% but less than 90%: good (2)
At least 90%: very good (1)

The PUE is an exam-intensive course and serves the purpose of preparation for the module exam.

Registration for the PUE is not mandatory ... (as in the old version; see below).

---
Old version (as a reference):

Attendance of the course `Relativity and Cosmology I' strongly encouraged.

We expect to cover 2-4 problems in each class. There is a `Kreuzerl-Liste', which you can access via Moodle with a deadline of 3 hours before the class. The entries can be corrected up to the deadline as many times as you wish. No deletions or additions to the list will be possible after the deadline. Exercises will be given a weight based on the level of difficulty: easy-1, standard-2, difficult-3. The grade for homework will the weighted mean of solved problems.

During the tutorials, you will be called to the blackboard on a random basis. The accuracy and completeness of your solution, the understanding of the subject, as well as the clarity and intelligibility of the presentation will be assessed and graded on a scale from 0 to 20. The presentation grade will be a product of your grade and exercise weight. Two blackboard presentations are required; no presentation implies zero points. A maximum number of points for blackboard presentation is 2*20*3=120.

The final score is an average of the blackboard presentation grade and the homework grade.

Grading:
Less than 50% of the maximum final score: not sufficient (5)
At least 50% but less than 65%: sufficient (4)
At least 65% but less than 80%: satisfactory (3)
At least 80% but less than 90%: good (2)
At least 90%: very good (1)

The PUE is an exam-intensive course and serves the purpose of preparation for the module exam.

Registration for the PUE is not mandatory but is highly recommended. Note that participation becomes compulsory after registering for the PUE. Deregistration from this course is possible until Tu 31.03.2020 23:59. All students still registered after this deadline will obtain a grade according to the assessment criteria of the PUE.

The grade of the PUE is NOT included in the grade of the module exam. The performance for the module (VO+PUE) is determined by the outcome of the (final) examination of the module.

Grading is subject to change according to https://www.univie.ac.at/en/about-us/further-information/coronavirus/

Prüfungsstoff

The problems as presented in the exercise sheets.

Literatur

- Lecturer's notes
- P.T. Chruściel, Elements of general relativity, Birkhäuser Basel, 2020
- L.P. Hughston, K.P. Tod, An Introduction to General Relativity, Cambridge University Press, 1991
- R.M. Wald, General Relativity, The University of Chicago Press, 1984
- J.B. Hartle, Gravity: An Introduction to Einstein's General Relativity, Pearson, 2003
- R. d'Inverno, Introducing Einstein's Relativity, Oxford University Press, 1992

Zuordnung im Vorlesungsverzeichnis

M-CORE 7, MaG 19, MaG 20

Letzte Änderung: Mo 07.09.2020 15:21